Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308120123> ?p ?o ?g. }
- W4308120123 endingPage "4030" @default.
- W4308120123 startingPage "4030" @default.
- W4308120123 abstract "The vehicular ad hoc network, VANET, is one of the most popular and promising technologies in intelligent transportation today. However, VANET is susceptible to several vulnerabilities that result in an intrusion. This intrusion must be solved before VANET technology can be adopted. In this study, we suggest a unique machine learning technique to improve VANET’s effectiveness. The proposed method incorporates two phases. Phase I detects the DDoS attack using a novel machine learning technique called SVM-HHO, which provides information about the vehicle. Phase II mitigates the impact of a DDoS attack and allocates bandwidth using a reliable resources management technique based on the hybrid whale dragonfly optimization algorithm (H-WDFOA). This proposed model could be an effective technique predicting and utilizing reliable information that provides effective results in smart vehicles. The novel machine learning-based technique was implemented through MATLAB and NS2 platforms. Network quality measurements included congestion, transit, collision, and QoS awareness cost. Based on the constraints, a different cost framework was designed. In addition, data preprocessing of the QoS factor and total routing costs were considered. Rider integrated cuckoo search (RI-CS) is a novel optimization algorithm that combines the concepts of the rider optimization algorithm (ROA) and cuckoo search (CS) to determine the optimal route with the lowest routing cost. The enhanced hybrid ant colony optimization routing protocol (EHACORP) is a networking technology that increases efficiency by utilizing the shortest route. The shortest path of the proposed protocol had the lowest communication overhead and the fewest number of hops between sending and receiving vehicles. The EHACORP involved two stages. To find the distance between cars in phase 1, EHACORP employed a method for calculating distance. Using starting point ant colony optimization, the ants were guided in phase 2 to develop the shortest route with the least number of connections to send information. The relatively short approach increases protocol efficiency in every way. The pairing of DCM and SBACO at H-WDFOA-VANET accelerated packet processing, reduced ant search time, eliminated blind broadcasting, and prevented stagnation issues. The delivery ratio and throughput of the H-WDFOA-packet VANET benefitted from its use of the shortest channel without stagnation, its rapid packet processing, and its rapid convergence speed. In conclusion, the proposed hybrid whale dragonfly optimization approach (H-WDFOA-VANET) was compared with industry standard models, such as rider integrated cuckoo search (RI-CS) and enhanced hybrid ant colony optimization routing protocol (EHACORP). With the proposed method, throughput could be increased. The proposed system had energy consumption values of 2.00000 mJ, latency values of 15.61668 s, and a drop at node 60 of 0.15759. Additionally, a higher throughput was achieved with the new method. With the suggested method, it is possible to meet the energy consumption targets, delay value, and drop value at node 60. The proposed method reduces the drop value at node 80 to 0.15504, delay time to 15.64318 s, and energy consumption to 2.00000 mJ. These outcomes demonstrate the effectiveness of our proposed method. Thus, the proposed system is more efficient than existing systems." @default.
- W4308120123 created "2022-11-08" @default.
- W4308120123 creator A5021399899 @default.
- W4308120123 creator A5030128018 @default.
- W4308120123 creator A5034896032 @default.
- W4308120123 creator A5038962235 @default.
- W4308120123 creator A5049438745 @default.
- W4308120123 creator A5063040903 @default.
- W4308120123 creator A5082259162 @default.
- W4308120123 creator A5087635644 @default.
- W4308120123 creator A5089077811 @default.
- W4308120123 date "2022-10-30" @default.
- W4308120123 modified "2023-10-17" @default.
- W4308120123 title "An Improved Machine Learning Model with Hybrid Technique in VANET for Robust Communication" @default.
- W4308120123 cites W2203968176 @default.
- W4308120123 cites W2235039675 @default.
- W4308120123 cites W2734437263 @default.
- W4308120123 cites W2765220306 @default.
- W4308120123 cites W2774661609 @default.
- W4308120123 cites W2790544619 @default.
- W4308120123 cites W2798060819 @default.
- W4308120123 cites W2799843691 @default.
- W4308120123 cites W2803288711 @default.
- W4308120123 cites W2862158594 @default.
- W4308120123 cites W2897345566 @default.
- W4308120123 cites W2914742901 @default.
- W4308120123 cites W2929063847 @default.
- W4308120123 cites W2963103668 @default.
- W4308120123 cites W2976201343 @default.
- W4308120123 cites W2980932806 @default.
- W4308120123 cites W2996463159 @default.
- W4308120123 cites W2999113954 @default.
- W4308120123 cites W3035389810 @default.
- W4308120123 cites W3038169716 @default.
- W4308120123 cites W3042433202 @default.
- W4308120123 cites W3083616926 @default.
- W4308120123 cites W3101528265 @default.
- W4308120123 cites W3116444033 @default.
- W4308120123 cites W3150078759 @default.
- W4308120123 cites W3156675873 @default.
- W4308120123 cites W3185832719 @default.
- W4308120123 cites W3192369463 @default.
- W4308120123 cites W3206599325 @default.
- W4308120123 cites W3210290276 @default.
- W4308120123 cites W4281625216 @default.
- W4308120123 cites W4283080009 @default.
- W4308120123 doi "https://doi.org/10.3390/math10214030" @default.
- W4308120123 hasPublicationYear "2022" @default.
- W4308120123 type Work @default.
- W4308120123 citedByCount "15" @default.
- W4308120123 countsByYear W43081201232022 @default.
- W4308120123 countsByYear W43081201232023 @default.
- W4308120123 crossrefType "journal-article" @default.
- W4308120123 hasAuthorship W4308120123A5021399899 @default.
- W4308120123 hasAuthorship W4308120123A5030128018 @default.
- W4308120123 hasAuthorship W4308120123A5034896032 @default.
- W4308120123 hasAuthorship W4308120123A5038962235 @default.
- W4308120123 hasAuthorship W4308120123A5049438745 @default.
- W4308120123 hasAuthorship W4308120123A5063040903 @default.
- W4308120123 hasAuthorship W4308120123A5082259162 @default.
- W4308120123 hasAuthorship W4308120123A5087635644 @default.
- W4308120123 hasAuthorship W4308120123A5089077811 @default.
- W4308120123 hasBestOaLocation W43081201231 @default.
- W4308120123 hasConcept C104954878 @default.
- W4308120123 hasConcept C117241572 @default.
- W4308120123 hasConcept C119857082 @default.
- W4308120123 hasConcept C154945302 @default.
- W4308120123 hasConcept C192448918 @default.
- W4308120123 hasConcept C202385902 @default.
- W4308120123 hasConcept C31258907 @default.
- W4308120123 hasConcept C35525427 @default.
- W4308120123 hasConcept C40128228 @default.
- W4308120123 hasConcept C41008148 @default.
- W4308120123 hasConcept C5119721 @default.
- W4308120123 hasConcept C555944384 @default.
- W4308120123 hasConcept C74172769 @default.
- W4308120123 hasConcept C76155785 @default.
- W4308120123 hasConcept C85617194 @default.
- W4308120123 hasConcept C89305328 @default.
- W4308120123 hasConcept C94523657 @default.
- W4308120123 hasConceptScore W4308120123C104954878 @default.
- W4308120123 hasConceptScore W4308120123C117241572 @default.
- W4308120123 hasConceptScore W4308120123C119857082 @default.
- W4308120123 hasConceptScore W4308120123C154945302 @default.
- W4308120123 hasConceptScore W4308120123C192448918 @default.
- W4308120123 hasConceptScore W4308120123C202385902 @default.
- W4308120123 hasConceptScore W4308120123C31258907 @default.
- W4308120123 hasConceptScore W4308120123C35525427 @default.
- W4308120123 hasConceptScore W4308120123C40128228 @default.
- W4308120123 hasConceptScore W4308120123C41008148 @default.
- W4308120123 hasConceptScore W4308120123C5119721 @default.
- W4308120123 hasConceptScore W4308120123C555944384 @default.
- W4308120123 hasConceptScore W4308120123C74172769 @default.
- W4308120123 hasConceptScore W4308120123C76155785 @default.
- W4308120123 hasConceptScore W4308120123C85617194 @default.
- W4308120123 hasConceptScore W4308120123C89305328 @default.
- W4308120123 hasConceptScore W4308120123C94523657 @default.
- W4308120123 hasIssue "21" @default.