Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308122173> ?p ?o ?g. }
- W4308122173 endingPage "1569" @default.
- W4308122173 startingPage "1569" @default.
- W4308122173 abstract "Deep learning bearing-fault diagnosis has shown strong vitality in recent years. In industrial practice, the running state of bearings is monitored by collecting data from multiple sensors, for instance, the drive end, the fan end, and the base. Given the complexity of the operating conditions and the limited number of bearing-fault samples, obtaining complementary fault features using the traditional fault-diagnosis method, which uses statistical characteristic in time or frequency, is difficult and relies heavily on prior knowledge. In addition, intelligent bearing-fault diagnosis based on a convolutional neural network (CNN) has several deficiencies, such as single-scale fixed convolutional kernels, excessive dependence on experts’ experience, and a limited capacity for learning a small training dataset. Considering these drawbacks, a novel intelligent bearing-fault-diagnosis method based on signal-to-RGB image mapping (STRIM) and multichannel multiscale CNN (MCMS-CNN) is proposed. First, the signals from three different sensors are converted into RGB images by the STRIM method to achieve feature fusion. To extract RGB image features effectively, the proposed MCMS-CNN is established, which can automatically learn complementary and abundant features at different scales. By increasing the width and decreasing the depth of the network, the overfitting caused by the complex network for a small dataset is eliminated, and the fault classification capability is guaranteed simultaneously. The performance of the method is verified through the Case Western Reserve University’s (CWRU) bearing dataset. Compared with different DL approaches, the proposed approach can effectively realize fault diagnosis and substantially outperform other methods." @default.
- W4308122173 created "2022-11-08" @default.
- W4308122173 creator A5010246185 @default.
- W4308122173 creator A5011351300 @default.
- W4308122173 creator A5047753599 @default.
- W4308122173 creator A5083300391 @default.
- W4308122173 date "2022-10-31" @default.
- W4308122173 modified "2023-09-25" @default.
- W4308122173 title "Bearing-Fault Diagnosis with Signal-to-RGB Image Mapping and Multichannel Multiscale Convolutional Neural Network" @default.
- W4308122173 cites W1597576211 @default.
- W4308122173 cites W2084327162 @default.
- W4308122173 cites W2317595875 @default.
- W4308122173 cites W2464878551 @default.
- W4308122173 cites W2489777820 @default.
- W4308122173 cites W2603304445 @default.
- W4308122173 cites W2608571722 @default.
- W4308122173 cites W2768753204 @default.
- W4308122173 cites W2895933188 @default.
- W4308122173 cites W2919115771 @default.
- W4308122173 cites W2919824850 @default.
- W4308122173 cites W2940491215 @default.
- W4308122173 cites W2957775899 @default.
- W4308122173 cites W2973424371 @default.
- W4308122173 cites W2975932043 @default.
- W4308122173 cites W2991632793 @default.
- W4308122173 cites W2994887188 @default.
- W4308122173 cites W2997931400 @default.
- W4308122173 cites W3005695061 @default.
- W4308122173 cites W3005904504 @default.
- W4308122173 cites W3008819860 @default.
- W4308122173 cites W3011171540 @default.
- W4308122173 cites W3014644090 @default.
- W4308122173 cites W3015213421 @default.
- W4308122173 cites W3018759860 @default.
- W4308122173 cites W3020712220 @default.
- W4308122173 cites W3025853527 @default.
- W4308122173 cites W3090887241 @default.
- W4308122173 cites W3107759795 @default.
- W4308122173 cites W3126383074 @default.
- W4308122173 cites W3131148586 @default.
- W4308122173 cites W3131671510 @default.
- W4308122173 cites W3138038736 @default.
- W4308122173 cites W3193002911 @default.
- W4308122173 cites W3215312151 @default.
- W4308122173 cites W4221031359 @default.
- W4308122173 cites W4281563255 @default.
- W4308122173 cites W4295766043 @default.
- W4308122173 doi "https://doi.org/10.3390/e24111569" @default.
- W4308122173 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36359658" @default.
- W4308122173 hasPublicationYear "2022" @default.
- W4308122173 type Work @default.
- W4308122173 citedByCount "0" @default.
- W4308122173 crossrefType "journal-article" @default.
- W4308122173 hasAuthorship W4308122173A5010246185 @default.
- W4308122173 hasAuthorship W4308122173A5011351300 @default.
- W4308122173 hasAuthorship W4308122173A5047753599 @default.
- W4308122173 hasAuthorship W4308122173A5083300391 @default.
- W4308122173 hasBestOaLocation W43081221731 @default.
- W4308122173 hasConcept C108583219 @default.
- W4308122173 hasConcept C119857082 @default.
- W4308122173 hasConcept C127313418 @default.
- W4308122173 hasConcept C138885662 @default.
- W4308122173 hasConcept C153180895 @default.
- W4308122173 hasConcept C154945302 @default.
- W4308122173 hasConcept C165205528 @default.
- W4308122173 hasConcept C175551986 @default.
- W4308122173 hasConcept C199978012 @default.
- W4308122173 hasConcept C22019652 @default.
- W4308122173 hasConcept C2776401178 @default.
- W4308122173 hasConcept C31972630 @default.
- W4308122173 hasConcept C41008148 @default.
- W4308122173 hasConcept C41895202 @default.
- W4308122173 hasConcept C50644808 @default.
- W4308122173 hasConcept C81363708 @default.
- W4308122173 hasConcept C82990744 @default.
- W4308122173 hasConceptScore W4308122173C108583219 @default.
- W4308122173 hasConceptScore W4308122173C119857082 @default.
- W4308122173 hasConceptScore W4308122173C127313418 @default.
- W4308122173 hasConceptScore W4308122173C138885662 @default.
- W4308122173 hasConceptScore W4308122173C153180895 @default.
- W4308122173 hasConceptScore W4308122173C154945302 @default.
- W4308122173 hasConceptScore W4308122173C165205528 @default.
- W4308122173 hasConceptScore W4308122173C175551986 @default.
- W4308122173 hasConceptScore W4308122173C199978012 @default.
- W4308122173 hasConceptScore W4308122173C22019652 @default.
- W4308122173 hasConceptScore W4308122173C2776401178 @default.
- W4308122173 hasConceptScore W4308122173C31972630 @default.
- W4308122173 hasConceptScore W4308122173C41008148 @default.
- W4308122173 hasConceptScore W4308122173C41895202 @default.
- W4308122173 hasConceptScore W4308122173C50644808 @default.
- W4308122173 hasConceptScore W4308122173C81363708 @default.
- W4308122173 hasConceptScore W4308122173C82990744 @default.
- W4308122173 hasFunder F4320321001 @default.
- W4308122173 hasIssue "11" @default.
- W4308122173 hasLocation W43081221731 @default.
- W4308122173 hasLocation W43081221732 @default.
- W4308122173 hasLocation W43081221733 @default.
- W4308122173 hasLocation W43081221734 @default.