Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308122687> ?p ?o ?g. }
- W4308122687 abstract "Background Metabolic brain imaging with 2-[ 18 F]fluoro-2-deoxy-D-glucose positron emission tomography (FDG PET) is a supportive diagnostic and differential diagnostic tool for neurodegenerative dementias. In the clinic, scans are usually visually interpreted. However, computer-aided approaches can improve diagnostic accuracy. We aimed to build two machine learning classifiers, based on two sets of FDG PET-derived features, for differential diagnosis of common dementia syndromes. Methods We analyzed FDG PET scans from three dementia cohorts [63 dementia due to Alzheimer’s disease (AD), 79 dementia with Lewy bodies (DLB) and 23 frontotemporal dementia (FTD)], and 41 normal controls (NCs). Patients’ clinical diagnosis at follow-up (25 ± 20 months after scanning) or cerebrospinal fluid biomarkers for Alzheimer’s disease was considered a gold standard. FDG PET scans were first visually evaluated. Scans were pre-processed, and two sets of features extracted: (1) the expressions of previously identified metabolic brain patterns, and (2) the mean uptake value in 95 regions of interest (ROIs). Two multi-class support vector machine (SVM) classifiers were tested and their diagnostic performance assessed and compared to visual reading. Class-specific regional feature importance was assessed with Shapley Additive Explanations. Results Pattern- and ROI-based classifier achieved higher overall accuracy than expert readers (78% and 80% respectively, vs. 71%). Both SVM classifiers performed similarly to one another and to expert readers in AD (F1 = 0.74, 0.78, and 0.78) and DLB (F1 = 0.81, 0.81, and 0.78). SVM classifiers outperformed expert readers in FTD (F1 = 0.87, 0.83, and 0.63), but not in NC (F1 = 0.71, 0.75, and 0.92). Visualization of the SVM model showed bilateral temporal cortices and cerebellum to be the most important features for AD; occipital cortices, hippocampi and parahippocampi, amygdala, and middle temporal lobes for DLB; bilateral frontal cortices, middle and anterior cingulum for FTD; and bilateral angular gyri, pons, and vermis for NC. Conclusion Multi-class SVM classifiers based on the expression of characteristic metabolic brain patterns or ROI glucose uptake, performed better than experts in the differential diagnosis of common dementias using FDG PET scans. Experts performed better in the recognition of normal scans and a combined approach may yield optimal results in the clinical setting." @default.
- W4308122687 created "2022-11-08" @default.
- W4308122687 creator A5010963129 @default.
- W4308122687 creator A5038618753 @default.
- W4308122687 creator A5041539272 @default.
- W4308122687 creator A5050445270 @default.
- W4308122687 creator A5058233829 @default.
- W4308122687 creator A5061599114 @default.
- W4308122687 creator A5068497317 @default.
- W4308122687 creator A5089876909 @default.
- W4308122687 date "2022-11-02" @default.
- W4308122687 modified "2023-10-18" @default.
- W4308122687 title "Automated differential diagnosis of dementia syndromes using FDG PET and machine learning" @default.
- W4308122687 cites W1975125044 @default.
- W4308122687 cites W1978983000 @default.
- W4308122687 cites W2015203806 @default.
- W4308122687 cites W2022371215 @default.
- W4308122687 cites W2044266196 @default.
- W4308122687 cites W2046601821 @default.
- W4308122687 cites W2048207814 @default.
- W4308122687 cites W2051434435 @default.
- W4308122687 cites W2056634527 @default.
- W4308122687 cites W2058046532 @default.
- W4308122687 cites W2081347040 @default.
- W4308122687 cites W2095309401 @default.
- W4308122687 cites W2098434338 @default.
- W4308122687 cites W2113502567 @default.
- W4308122687 cites W2115017507 @default.
- W4308122687 cites W2121673076 @default.
- W4308122687 cites W2126105956 @default.
- W4308122687 cites W2128030851 @default.
- W4308122687 cites W2141562510 @default.
- W4308122687 cites W2157391751 @default.
- W4308122687 cites W2165206443 @default.
- W4308122687 cites W2226581991 @default.
- W4308122687 cites W2517969370 @default.
- W4308122687 cites W2589217068 @default.
- W4308122687 cites W2605106061 @default.
- W4308122687 cites W2619097621 @default.
- W4308122687 cites W2623521763 @default.
- W4308122687 cites W2626479040 @default.
- W4308122687 cites W2767200421 @default.
- W4308122687 cites W2798054687 @default.
- W4308122687 cites W2799640735 @default.
- W4308122687 cites W2802699769 @default.
- W4308122687 cites W2888873632 @default.
- W4308122687 cites W2889292324 @default.
- W4308122687 cites W2899083546 @default.
- W4308122687 cites W2903517662 @default.
- W4308122687 cites W2904800311 @default.
- W4308122687 cites W2973007151 @default.
- W4308122687 cites W2999615587 @default.
- W4308122687 cites W3017498209 @default.
- W4308122687 cites W3017834839 @default.
- W4308122687 cites W3041135979 @default.
- W4308122687 cites W3043374725 @default.
- W4308122687 cites W3109648071 @default.
- W4308122687 cites W3146613606 @default.
- W4308122687 cites W3157083093 @default.
- W4308122687 cites W3164390524 @default.
- W4308122687 cites W4210447105 @default.
- W4308122687 cites W4210488227 @default.
- W4308122687 cites W4211050998 @default.
- W4308122687 cites W4212855866 @default.
- W4308122687 cites W4235875658 @default.
- W4308122687 cites W4241875855 @default.
- W4308122687 cites W4283066188 @default.
- W4308122687 cites W4285032751 @default.
- W4308122687 doi "https://doi.org/10.3389/fnagi.2022.1005731" @default.
- W4308122687 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36408106" @default.
- W4308122687 hasPublicationYear "2022" @default.
- W4308122687 type Work @default.
- W4308122687 citedByCount "2" @default.
- W4308122687 countsByYear W43081226872023 @default.
- W4308122687 crossrefType "journal-article" @default.
- W4308122687 hasAuthorship W4308122687A5010963129 @default.
- W4308122687 hasAuthorship W4308122687A5038618753 @default.
- W4308122687 hasAuthorship W4308122687A5041539272 @default.
- W4308122687 hasAuthorship W4308122687A5050445270 @default.
- W4308122687 hasAuthorship W4308122687A5058233829 @default.
- W4308122687 hasAuthorship W4308122687A5061599114 @default.
- W4308122687 hasAuthorship W4308122687A5068497317 @default.
- W4308122687 hasAuthorship W4308122687A5089876909 @default.
- W4308122687 hasBestOaLocation W43081226871 @default.
- W4308122687 hasConcept C118552586 @default.
- W4308122687 hasConcept C12267149 @default.
- W4308122687 hasConcept C126838900 @default.
- W4308122687 hasConcept C142724271 @default.
- W4308122687 hasConcept C154945302 @default.
- W4308122687 hasConcept C15744967 @default.
- W4308122687 hasConcept C2775842073 @default.
- W4308122687 hasConcept C2778548049 @default.
- W4308122687 hasConcept C2778641062 @default.
- W4308122687 hasConcept C2779134260 @default.
- W4308122687 hasConcept C2779483572 @default.
- W4308122687 hasConcept C2780801072 @default.
- W4308122687 hasConcept C2989005 @default.
- W4308122687 hasConcept C40993552 @default.
- W4308122687 hasConcept C41008148 @default.
- W4308122687 hasConcept C58693492 @default.