Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308127042> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W4308127042 endingPage "5484" @default.
- W4308127042 startingPage "5484" @default.
- W4308127042 abstract "The evaporation duct height (EDH) can reflect the main characteristics of the near-surface meteorological environment, which is essential for designing a communication system under this propagation mechanism. This study proposes an EDH prediction network with multi-layer perception (MLP). Further, we construct a multi-dimensional EDH prediction model (multilayer-MLP-EDH) for the first time by adding spatial and temporal “extra data” derived from the meteorological measurements. The experimental results show that: (1) compared with the naval-postgraduate-school (NPS) model, the root-mean-square error (RMSE) of the meteorological-MLP-EDH model is reduced to 2.15 m, and the percentage improvement reached 54.00%; (2) spatial and temporal parameters can reduce the RMSE to 1.54 m with an improvement of 66.96%; (3) the multilayer-MLP- EDH model can match measurements well at both large and small scales by attaching meteorological parameters at extra height, the error is further reduced to 1.05 m, with 77.51% improvement compared with the NPS model. The proposed model can significantly improve the prediction accuracy of the EDH and has great potential to improve the communication quality, reliability, and efficiency of ducting in evaporation ducts." @default.
- W4308127042 created "2022-11-08" @default.
- W4308127042 creator A5002847404 @default.
- W4308127042 creator A5039298839 @default.
- W4308127042 creator A5074624378 @default.
- W4308127042 date "2022-10-31" @default.
- W4308127042 modified "2023-10-14" @default.
- W4308127042 title "A Multi-Dimensional Deep-Learning-Based Evaporation Duct Height Prediction Model Derived from MAGIC Data" @default.
- W4308127042 cites W1514621016 @default.
- W4308127042 cites W1977237085 @default.
- W4308127042 cites W1980234925 @default.
- W4308127042 cites W1983390923 @default.
- W4308127042 cites W1983463428 @default.
- W4308127042 cites W1990668974 @default.
- W4308127042 cites W1990727484 @default.
- W4308127042 cites W2044820013 @default.
- W4308127042 cites W2045064107 @default.
- W4308127042 cites W2054445312 @default.
- W4308127042 cites W2067557309 @default.
- W4308127042 cites W2089248246 @default.
- W4308127042 cites W2115280330 @default.
- W4308127042 cites W2120178384 @default.
- W4308127042 cites W2121264610 @default.
- W4308127042 cites W2141278204 @default.
- W4308127042 cites W2146132545 @default.
- W4308127042 cites W2146725832 @default.
- W4308127042 cites W2259808861 @default.
- W4308127042 cites W2313083437 @default.
- W4308127042 cites W2466397536 @default.
- W4308127042 cites W2508369463 @default.
- W4308127042 cites W2534074940 @default.
- W4308127042 cites W2766398356 @default.
- W4308127042 cites W2809292300 @default.
- W4308127042 cites W2899729262 @default.
- W4308127042 cites W2902221246 @default.
- W4308127042 cites W2911933042 @default.
- W4308127042 cites W2914253381 @default.
- W4308127042 cites W2922137486 @default.
- W4308127042 cites W2949736723 @default.
- W4308127042 cites W2964083310 @default.
- W4308127042 cites W2964490988 @default.
- W4308127042 cites W3038971444 @default.
- W4308127042 cites W3045024146 @default.
- W4308127042 cites W3045843998 @default.
- W4308127042 cites W3048810014 @default.
- W4308127042 cites W3153218935 @default.
- W4308127042 cites W3158074432 @default.
- W4308127042 cites W4206621035 @default.
- W4308127042 cites W4281617985 @default.
- W4308127042 doi "https://doi.org/10.3390/rs14215484" @default.
- W4308127042 hasPublicationYear "2022" @default.
- W4308127042 type Work @default.
- W4308127042 citedByCount "2" @default.
- W4308127042 countsByYear W43081270422023 @default.
- W4308127042 crossrefType "journal-article" @default.
- W4308127042 hasAuthorship W4308127042A5002847404 @default.
- W4308127042 hasAuthorship W4308127042A5039298839 @default.
- W4308127042 hasAuthorship W4308127042A5074624378 @default.
- W4308127042 hasBestOaLocation W43081270421 @default.
- W4308127042 hasConcept C105795698 @default.
- W4308127042 hasConcept C139945424 @default.
- W4308127042 hasConcept C33923547 @default.
- W4308127042 hasConcept C39432304 @default.
- W4308127042 hasConcept C41008148 @default.
- W4308127042 hasConceptScore W4308127042C105795698 @default.
- W4308127042 hasConceptScore W4308127042C139945424 @default.
- W4308127042 hasConceptScore W4308127042C33923547 @default.
- W4308127042 hasConceptScore W4308127042C39432304 @default.
- W4308127042 hasConceptScore W4308127042C41008148 @default.
- W4308127042 hasFunder F4320321001 @default.
- W4308127042 hasIssue "21" @default.
- W4308127042 hasLocation W43081270421 @default.
- W4308127042 hasOpenAccess W4308127042 @default.
- W4308127042 hasPrimaryLocation W43081270421 @default.
- W4308127042 hasRelatedWork W1596801655 @default.
- W4308127042 hasRelatedWork W2130043461 @default.
- W4308127042 hasRelatedWork W2350741829 @default.
- W4308127042 hasRelatedWork W2358668433 @default.
- W4308127042 hasRelatedWork W2376932109 @default.
- W4308127042 hasRelatedWork W2382290278 @default.
- W4308127042 hasRelatedWork W2390279801 @default.
- W4308127042 hasRelatedWork W2748952813 @default.
- W4308127042 hasRelatedWork W2899084033 @default.
- W4308127042 hasRelatedWork W2530322880 @default.
- W4308127042 hasVolume "14" @default.
- W4308127042 isParatext "false" @default.
- W4308127042 isRetracted "false" @default.
- W4308127042 workType "article" @default.