Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308128772> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W4308128772 endingPage "373" @default.
- W4308128772 startingPage "362" @default.
- W4308128772 abstract "No AccessEngineering NotesTime-Delay Margin Tuning of a Quadrotor Adaptive ControllerTheresa C. Furgiuele and Daniel J. ParksTheresa C. FurgiueleNaval Surface Warfare Center Dahlgren Division, Dahlgren, Virginia 22448*Student Trainee; .Search for more papers by this author and Daniel J. ParksNaval Surface Warfare Center Dahlgren Division, Dahlgren, Virginia 22448†Engineer; .Search for more papers by this authorPublished Online:2 Nov 2022https://doi.org/10.2514/1.G007066SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Zulu A. and John S., “A Review of Control Algorithms for Autonomous Quadrotors,” arXiv preprint arXiv:1602.02622, 2016. https://doi.org/10.48550/arXiv.1602.02622 Google Scholar[2] Kim J., Gadsden S. A. and Wilkerson S. A., “A Comprehensive Survey of Control Strategies for Autonomous Quadrotors,” Canadian Journal of Electrical and Computer Engineering, Vol. 43, No. 1, 2019, pp. 3–16. https://doi.org/10.1109/CJECE.2019.2920938 CrossrefGoogle Scholar[3] Diao C., Xian B., Yin Q., Zeng W., Li H. and Yang Y., “A Nonlinear Adaptive Control Approach for Quadrotor UAVs,” 2011 8th Asian Control Conference (ASCC), Inst. of Electrical and Electronics Engineers, New York, 2011, pp. 223–228. Google Scholar[4] Dydek Z. T., “Adaptive Control of Unmanned Aerial Systems,” Ph.D. Thesis, Massachusetts Inst. of Technology, Cambridge, MA, 2010. Google Scholar[5] Chamseddine A., Zhang Y., Rabbath C.-A., Apkarian J. and Fulford C., “Model Reference Adaptive Fault Tolerant Control of a Quadrotor UAV,” Infotech @ Aerospace 2011, AIAA Paper 2011-1606, 2011. https://doi.org/10.2514/6.2011-1606 LinkGoogle Scholar[6] Lanzon A., Freddi A. and Longhi S., “Flight Control of a Quadrotor Vehicle Subsequent to a Rotor Failure,” Journal of Guidance, Control, and Dynamics, Vol. 37, No. 2, 2014, pp. 580–591. https://doi.org/10.2514/1.59869 LinkGoogle Scholar[7] Stephan J., Schmitt L. and Fichter W., “Linear Parameter-Varying Control for Quadrotors in Case of Complete Actuator Loss,” Journal of Guidance, Control, and Dynamics, Vol. 41, No. 10, 2018, pp. 2232–2246. https://doi.org/10.2514/1.G003441 LinkGoogle Scholar[8] Huang M., Xian B., Diao C., Yang K. and Feng Y., “Adaptive Tracking Control of Underactuated Quadrotor Unmanned Aerial Vehicles Via Backstepping,” Proceedings of the 2010 American Control Conference, Inst. of Electrical and Electronics Engineers, New York, 2010, pp. 2076–2081. https://doi.org/10.1109/ACC.2010.5531424 Google Scholar[9] Dinh T. X. and Ahn K. K., “Adaptive Tracking Control of a Quadrotor Unmanned Vehicle,” International Journal of Precision Engineering and Manufacturing, Vol. 18, No. 2, 2017, pp. 163–173. https://doi.org/10.1007/s12541-017-0022-7 CrossrefGoogle Scholar[10] Bouadi H. and Mora-Camino F., “Modeling and Adaptive Flight Control for Quadrotor Trajectory Tracking,” Journal of Aircraft, Vol. 55, No. 2, 2018, pp. 666–681. https://doi.org/10.2514/1.C034477 LinkGoogle Scholar[11] Islam S., Faraz M., Ashour R., Cai G., Dias J. and Seneviratne L., “Adaptive Sliding Mode Control Design for Quadrotor Unmanned Aerial Vehicle,” 2015 International Conference on Unmanned Aircraft Systems (ICUAS), Inst. of Electrical and Electronics Engineers, New York, 2015, pp. 34–39. https://doi.org/10.1109/ICUAS.2015.7152272 Google Scholar[12] Bouadi H., Aoudjif A. and Guenifi M., “Adaptive Flight Control for Quadrotor UAV in the Presence of External Disturbances,” 2015 6th International Conference on Modeling, Simulation, and Applied Optimization (ICMSAO), Inst. of Electrical and Electronics Engineers, New York, 2015, pp. 1–6. https://doi.org/10.1109/ICMSAO.2015.7152250 Google Scholar[13] Zhang J., Ren Z., Deng C. and Wen B., “Adaptive Fuzzy Global Sliding Mode Control for Trajectory Tracking of Quadrotor UAVs,” Nonlinear Dynamics, Vol. 97, No. 1, 2019, pp. 609–627. https://doi.org/10.1007/s11071-019-05002-9 Google Scholar[14] Kun D. W. and Hwang I., “Linear Matrix Inequality-Based Nonlinear Adaptive Robust Control of Quadrotor,” Journal of Guidance, Control, and Dynamics, Vol. 39, No. 5, 2016, pp. 996–1008. https://doi.org/10.2514/1.G001439 LinkGoogle Scholar[15] Jafarnejadsani H., Sun D., Lee H. and Hovakimyan N., “Optimized l 1 Adaptive Controller for Trajectory Tracking of an Indoor Quadrotor,” Journal of Guidance, Control, and Dynamics, Vol. 40, No. 6, 2017, pp. 1415–1427. https://doi.org/10.2514/1.G000566 LinkGoogle Scholar[16] Lee B.-Y., Lee H.-I. and Tahk M.-J., “Analysis of Adaptive Control Using On-Line Neural Networks for a Quadrotor UAV,” 2013 13th International Conference on Control, Automation and Systems (ICCAS 2013), Inst. of Electrical and Electronics Engineers, New York, 2013, pp. 1840–1844. https://doi.org/10.1109/ICCAS.2013.6704240 Google Scholar[17] Lin Q., Cai Z., Wang Y., Yang J. and Chen L., “Adaptive Flight Control Design for Quadrotor UAV Based on Dynamic Inversion and Neural Networks,” 2013 Third International Conference on Instrumentation, Measurement, Computer, Communication and Control, Inst. of Electrical and Electronics Engineers, New York, 2013, pp. 1461–1466. https://doi.org/10.1109/IMCCC.2013.326 Google Scholar[18] Whitehead B. and Bieniawski S., “Model Reference Adaptive Control of a Quadrotor UAV,” AIAA Guidance, Navigation, and Control Conference, AIAA Paper 2010-8148, 2010. https://doi.org/10.2514/6.2010-8148 Google Scholar[19] Ristevski S., Koru A. T., Yucelen T., Dogan K. M. and Muse J. A., “Experimental Results of a Quadrotor UAV with a Model Reference Adaptive Controller in the Presence of Unmodeled Dynamic,” AIAA Scitech 2022 Forum, AIAA Paper 2022-1381, 2022. https://doi.org/10.2514/6.2022-1381 LinkGoogle Scholar[20] Abdul Ghaffar A. F. and Richardson T. S., “Position Tracking of an Underactuated Quadrotor Using Model Reference Adaptive Control,” AIAA Guidance, Navigation, and Control Conference, AIAA Paper 2016-1388, 2016. https://doi.org/10.2514/6.2016-1388 LinkGoogle Scholar[21] Wise K. A., Lavretsky E. and Hovakimyan N., “Adaptive Control of Flight: Theory, Applications, and Open Problems,” 2006 American Control Conference, Inst. of Electrical and Electronics Engineers, New York, 2006, p. 6. https://doi.org/10.1109/ACC.2006.1657677 Google Scholar[22] Steinberg M., “Historical Overview of Research in Reconfigurable Flight Control,” Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, Vol. 219, No. 4, 2005, pp. 263–275. https://doi.org/10.1243/095441005X30379 CrossrefGoogle Scholar[23] Heise C. D., Leitão M. and Holzapfel F., “Performance and Robustness Metrics for Adaptive Flight Control-Available Approaches,” AIAA Guidance, Navigation, and Control (GNC) Conference, AIAA Paper 2013-5090, 2013. https://doi.org/10.2514/6.2013-5090 LinkGoogle Scholar[24] Jacklin S., “Closing the Certification Gaps in Adaptive Flight Control Software,” AIAA Guidance, Navigation and Control Conference and Exhibit, AIAA Paper 2008-6988, 2008. https://doi.org/10.2514/6.2008-6988 LinkGoogle Scholar[25] Belcastro C. and Belcastro C., “On the Validation of Safety Critical Aircraft Systems, Part I: An Overview of Analytical & Simulation Methods,” AIAA Guidance, Navigation, and Control Conference and Exhibit, AIAA Paper 2003-5559, 2003. https://doi.org/10.2514/6.2003-5559 Google Scholar[26] Lavretsky E., “Adaptive Control: Introduction, Overview, and Applications,” Lecture Notes from IEEE Robust and Adaptive Control Workshop, Inst. of Electrical and Electronics Engineers, New York, 2008. Google Scholar[27] Sang Q. and Tao G., “Gain Margins of Model Reference Adaptive Control Systems,” 2008 7th World Congress on Intelligent Control and Automation, Inst. of Electrical and Electronics Engineers, New York, 2008, pp. 2946–2951. https://doi.org/10.1109/WCICA.2008.4593393 Google Scholar[28] Sang Q. and Tao G., “Gain Margins of Adaptive Control Systems,” IEEE Transactions on Automatic Control, Vol. 55, No. 1, 2009, pp. 104–115. https://doi.org/10.1109/TAC.2009.2034921 Google Scholar[29] Dydek Z., Jain H., Jang J., Annaswamy A. and Lavretsky E., “Theoretically Verifiable Stability Margins for an Adaptive Controller,” AIAA Guidance, Navigation, and Control Conference and Exhibit, AIAA Paper 2006-6416, 2006. https://doi.org/10.2514/6.2006-6416 LinkGoogle Scholar[30] Stellet J. E., “Influence of Adaptation Gain and Reference Model Parameters on System Performance for Model Reference Adaptive Control,” World Academy of Science, Engineering and Technology, Vol. 60, No. 3, 2011, pp. 1768–1773. https://doi.org/10.5281/zenodo.1329547 Google Scholar[31] Stepanyan V. and Krishnakumar K., “MRAC Revisited: Guaranteed Performance with Reference Model Modification,” Proceedings of the 2010 American Control Conference, Inst. of Electrical and Electronics Engineers, New York, 2010, pp. 93–98. https://doi.org/10.1109/ACC.2010.5530648 Google Scholar[32] Gibson T. E., Annaswamy A. M. and Lavretsky E., “Adaptive Systems with Closed-Loop Reference Models: Stability, Robustness and Transient Performance,” arXiv preprint arXiv:1201.4897, 2012. https://doi.org/10.48550/arXiv.1201.4897 Google Scholar[33] Gibson T. E., Annaswamy A. M. and Lavretsky E., “On Adaptive Control with Closed-Loop Reference Models: Transients, Oscillations, and Peaking,” IEEE Access, Vol. 1, No. 1, 2013, pp. 703–717. https://doi.org/10.1109/ACCESS.2013.2284005 Google Scholar[34] Nguyen N., Ishihara A., Krishnakumar K. and Bakhtiari-Nejad M., “Bounded Linear Stability Analysis—A Time Delay Margin Estimation Approach for Adaptive Control,” AIAA Guidance, Navigation, and Control Conference, AIAA Paper 2009-5968, 2009. https://doi.org/10.2514/6.2009-5968 LinkGoogle Scholar[35] Stepanyan V. and Krishnakumar K., “On the Robustness Properties of M-MRAC,” [email protected] Aerospace 2012, 2012. https://doi.org/10.2514/6.2012-2407 Google Scholar[36] Melo Pacheco A., “Time Delay Margin Analysis for Model Reference Adaptive Flight Control Laws: A Bounded Linear Stability Approach and Application to Aeroservoelasticity Models,” Master’s Thesis, Delft Univ. of Technology, 2018. Google Scholar[37] Dorobantu A., “Time Delay Margin Analysis for Adaptive Flight Control Laws,” Master’s Thesis, Univ. of Minnesota, 2010. Google Scholar[38] Hodel A., Whorton M. and Zhu J., “Stability Metrics for Simulation and Flight-Software Assessment and Monitoring of Adaptive Control Assist Compensators,” AIAA Guidance, Navigation and Control Conference and Exhibit, AIAA Paper 2008-7005, 2008. https://doi.org/10.2514/6.2008-7005 LinkGoogle Scholar[39] Dorobantu A., Seiler P. and Balas G. J., “Time-Delay Margin Analysis for an Adaptive Controller,” Journal of Guidance, Control, and Dynamics, Vol. 35, No. 5, 2012, pp. 1418–1425. LinkGoogle Scholar[40] Annaswamy A., Jang J. and Lavretsky E., “Stability Margins for Adaptive Controllers in the Presence of Time-Delay,” AIAA Guidance, Navigation and Control Conference and Exhibit, AIAA Paper 2008-6659, 2008. https://doi.org/10.2514/6.2008-6659 LinkGoogle Scholar[41] Jang J., “Adaptive Control Design with Guaranteed Margins for Nonlinear Plants,” Ph.D. Thesis, Massachusetts Inst. of Technology, Cambridge, MA, 2009. Google Scholar[42] Hussain H. S., Yildiz Y., Matsutani M., Annaswamy A. M. and Lavretsky E., “Computable Delay Margins for Adaptive Systems with State Variables Accessible,” IEEE Transactions on Automatic Control, Vol. 62, No. 10, 2017, pp. 5039–5054. https://doi.org/10.1109/TAC.2017.2690138. Google Scholar[43] Nguyen N. and Summers E., “On Time Delay Margin Estimation for Adaptive Control and Robust Modification Adaptive Laws,” AIAA Guidance, Navigation, and Control Conference, AIAA Paper 2011-6438, 2011. https://doi.org/10.2514/6.2011-6438 LinkGoogle Scholar[44] Mahmoud M. S., Robust Control and Filtering for Time-Delay Systems, Marcel-Dekker, New York, 2000, Chap. 1. Google Scholar[45] Lavretsky E. and Wise K. A., “Robust Adaptive Control,” Robust and Adaptive Control, Springer, Berlin, 2013, pp. 317–353. CrossrefGoogle Scholar Previous article Next article FiguresReferencesRelatedDetails What's Popular Volume 46, Number 2February 2023 CrossmarkInformationThis material is declared a work of the U.S. Government and is not subject to copyright protection in the United States. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-3884 to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp. TopicsAdaptive AlgorithmAerospace SciencesAircraft Operations and TechnologyAircraft Stability and ControlAircraftsAlgorithms and Data StructuresApplied MathematicsAstrodynamicsAstronauticsAttitude ControlComputing and InformaticsComputing, Information, and CommunicationControl TheoryData ScienceFlight Control SurfacesGeneral PhysicsGuidance, Navigation, and Control SystemsQuadcopterUnmanned Aerial Vehicle KeywordsQuadrotorModel Reference Adaptive ControlAttitude DynamicsYawComputingNonlinear SystemsAcknowledgmentsThe authors wish to acknowledge the contributions of the Research Institute for Surface Engagement (RISE) and Steve Malyevac in providing funding and guidance for this research.PDF Received22 June 2022Accepted5 September 2022Published online2 November 2022" @default.
- W4308128772 created "2022-11-08" @default.
- W4308128772 creator A5044207148 @default.
- W4308128772 creator A5059725874 @default.
- W4308128772 date "2023-02-01" @default.
- W4308128772 modified "2023-09-29" @default.
- W4308128772 title "Time-Delay Margin Tuning of a Quadrotor Adaptive Controller" @default.
- W4308128772 cites W1983404562 @default.
- W4308128772 cites W1990290611 @default.
- W4308128772 cites W1995648932 @default.
- W4308128772 cites W2006187520 @default.
- W4308128772 cites W2013160040 @default.
- W4308128772 cites W2050433053 @default.
- W4308128772 cites W2083126864 @default.
- W4308128772 cites W2099512231 @default.
- W4308128772 cites W2166552785 @default.
- W4308128772 cites W2207063462 @default.
- W4308128772 cites W2312667076 @default.
- W4308128772 cites W2316706901 @default.
- W4308128772 cites W2321138547 @default.
- W4308128772 cites W2328678714 @default.
- W4308128772 cites W2331922869 @default.
- W4308128772 cites W234738007 @default.
- W4308128772 cites W2584450351 @default.
- W4308128772 cites W2588192101 @default.
- W4308128772 cites W2745756226 @default.
- W4308128772 cites W2811472176 @default.
- W4308128772 cites W2947960366 @default.
- W4308128772 cites W2974823253 @default.
- W4308128772 cites W4206216124 @default.
- W4308128772 cites W2605990278 @default.
- W4308128772 doi "https://doi.org/10.2514/1.g007066" @default.
- W4308128772 hasPublicationYear "2023" @default.
- W4308128772 type Work @default.
- W4308128772 citedByCount "0" @default.
- W4308128772 crossrefType "journal-article" @default.
- W4308128772 hasAuthorship W4308128772A5044207148 @default.
- W4308128772 hasAuthorship W4308128772A5059725874 @default.
- W4308128772 hasConcept C119857082 @default.
- W4308128772 hasConcept C127413603 @default.
- W4308128772 hasConcept C133731056 @default.
- W4308128772 hasConcept C154945302 @default.
- W4308128772 hasConcept C203479927 @default.
- W4308128772 hasConcept C2775924081 @default.
- W4308128772 hasConcept C41008148 @default.
- W4308128772 hasConcept C47446073 @default.
- W4308128772 hasConcept C6557445 @default.
- W4308128772 hasConcept C774472 @default.
- W4308128772 hasConcept C86803240 @default.
- W4308128772 hasConceptScore W4308128772C119857082 @default.
- W4308128772 hasConceptScore W4308128772C127413603 @default.
- W4308128772 hasConceptScore W4308128772C133731056 @default.
- W4308128772 hasConceptScore W4308128772C154945302 @default.
- W4308128772 hasConceptScore W4308128772C203479927 @default.
- W4308128772 hasConceptScore W4308128772C2775924081 @default.
- W4308128772 hasConceptScore W4308128772C41008148 @default.
- W4308128772 hasConceptScore W4308128772C47446073 @default.
- W4308128772 hasConceptScore W4308128772C6557445 @default.
- W4308128772 hasConceptScore W4308128772C774472 @default.
- W4308128772 hasConceptScore W4308128772C86803240 @default.
- W4308128772 hasIssue "2" @default.
- W4308128772 hasLocation W43081287721 @default.
- W4308128772 hasOpenAccess W4308128772 @default.
- W4308128772 hasPrimaryLocation W43081287721 @default.
- W4308128772 hasRelatedWork W1543892378 @default.
- W4308128772 hasRelatedWork W1991899812 @default.
- W4308128772 hasRelatedWork W2032904427 @default.
- W4308128772 hasRelatedWork W2112027397 @default.
- W4308128772 hasRelatedWork W2247155938 @default.
- W4308128772 hasRelatedWork W2365785480 @default.
- W4308128772 hasRelatedWork W2393509435 @default.
- W4308128772 hasRelatedWork W4309681964 @default.
- W4308128772 hasRelatedWork W2142250755 @default.
- W4308128772 hasRelatedWork W2182011417 @default.
- W4308128772 hasVolume "46" @default.
- W4308128772 isParatext "false" @default.
- W4308128772 isRetracted "false" @default.
- W4308128772 workType "article" @default.