Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308128934> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W4308128934 endingPage "3578" @default.
- W4308128934 startingPage "3578" @default.
- W4308128934 abstract "Acoustic signal classification plays a central role in acoustic source identification. In practical applications, however, varieties of training data are typically inadequate, which leads to a low sample complexity. Applying classical deep learning methods to identify acoustic signals involves a large number of parameters in the classification model, which calls for great sample complexity. Therefore, low sample complexity modeling is one of the most important issues related to the performance of the acoustic signal classification. In this study, the authors propose a novel data fusion model named MFF-ResNet, in which manual design features and deep representation of log-Mel spectrogram features are fused with bi-level attention. The proposed approach involves an amount of prior human knowledge as implicit regularization, thus leading to an interpretable and low sample complexity model of the acoustic signal classification. The experimental results suggested that MFF-ResNet is capable of accurate acoustic signal classification with fewer training samples." @default.
- W4308128934 created "2022-11-08" @default.
- W4308128934 creator A5016437556 @default.
- W4308128934 creator A5020616981 @default.
- W4308128934 creator A5069612314 @default.
- W4308128934 creator A5084846204 @default.
- W4308128934 date "2022-11-01" @default.
- W4308128934 modified "2023-09-26" @default.
- W4308128934 title "Identifying the Acoustic Source via MFF-ResNet with Low Sample Complexity" @default.
- W4308128934 cites W1922126009 @default.
- W4308128934 cites W1988935075 @default.
- W4308128934 cites W1990553134 @default.
- W4308128934 cites W2066218102 @default.
- W4308128934 cites W2115796660 @default.
- W4308128934 cites W2139496223 @default.
- W4308128934 cites W2161493891 @default.
- W4308128934 cites W2194775991 @default.
- W4308128934 cites W2252523470 @default.
- W4308128934 cites W2400519873 @default.
- W4308128934 cites W2563536398 @default.
- W4308128934 cites W2593451766 @default.
- W4308128934 cites W2751841560 @default.
- W4308128934 cites W2799845958 @default.
- W4308128934 cites W2894955409 @default.
- W4308128934 cites W2919115771 @default.
- W4308128934 cites W2921428784 @default.
- W4308128934 cites W2924476266 @default.
- W4308128934 cites W2947379490 @default.
- W4308128934 cites W2962785008 @default.
- W4308128934 cites W2963845150 @default.
- W4308128934 cites W2964347220 @default.
- W4308128934 cites W2990438554 @default.
- W4308128934 cites W3103078407 @default.
- W4308128934 cites W3109551881 @default.
- W4308128934 cites W3175400544 @default.
- W4308128934 cites W3212919720 @default.
- W4308128934 cites W4281680620 @default.
- W4308128934 doi "https://doi.org/10.3390/electronics11213578" @default.
- W4308128934 hasPublicationYear "2022" @default.
- W4308128934 type Work @default.
- W4308128934 citedByCount "0" @default.
- W4308128934 crossrefType "journal-article" @default.
- W4308128934 hasAuthorship W4308128934A5016437556 @default.
- W4308128934 hasAuthorship W4308128934A5020616981 @default.
- W4308128934 hasAuthorship W4308128934A5069612314 @default.
- W4308128934 hasAuthorship W4308128934A5084846204 @default.
- W4308128934 hasBestOaLocation W43081289341 @default.
- W4308128934 hasConcept C11413529 @default.
- W4308128934 hasConcept C153180895 @default.
- W4308128934 hasConcept C154945302 @default.
- W4308128934 hasConcept C179799912 @default.
- W4308128934 hasConcept C185592680 @default.
- W4308128934 hasConcept C198531522 @default.
- W4308128934 hasConcept C199360897 @default.
- W4308128934 hasConcept C2776135515 @default.
- W4308128934 hasConcept C2779843651 @default.
- W4308128934 hasConcept C28490314 @default.
- W4308128934 hasConcept C41008148 @default.
- W4308128934 hasConcept C43617362 @default.
- W4308128934 hasConcept C45273575 @default.
- W4308128934 hasConceptScore W4308128934C11413529 @default.
- W4308128934 hasConceptScore W4308128934C153180895 @default.
- W4308128934 hasConceptScore W4308128934C154945302 @default.
- W4308128934 hasConceptScore W4308128934C179799912 @default.
- W4308128934 hasConceptScore W4308128934C185592680 @default.
- W4308128934 hasConceptScore W4308128934C198531522 @default.
- W4308128934 hasConceptScore W4308128934C199360897 @default.
- W4308128934 hasConceptScore W4308128934C2776135515 @default.
- W4308128934 hasConceptScore W4308128934C2779843651 @default.
- W4308128934 hasConceptScore W4308128934C28490314 @default.
- W4308128934 hasConceptScore W4308128934C41008148 @default.
- W4308128934 hasConceptScore W4308128934C43617362 @default.
- W4308128934 hasConceptScore W4308128934C45273575 @default.
- W4308128934 hasFunder F4320321001 @default.
- W4308128934 hasIssue "21" @default.
- W4308128934 hasLocation W43081289341 @default.
- W4308128934 hasOpenAccess W4308128934 @default.
- W4308128934 hasPrimaryLocation W43081289341 @default.
- W4308128934 hasRelatedWork W2065296656 @default.
- W4308128934 hasRelatedWork W2138997758 @default.
- W4308128934 hasRelatedWork W2766960583 @default.
- W4308128934 hasRelatedWork W2897924318 @default.
- W4308128934 hasRelatedWork W2973062255 @default.
- W4308128934 hasRelatedWork W3089904752 @default.
- W4308128934 hasRelatedWork W3133517635 @default.
- W4308128934 hasRelatedWork W3195104037 @default.
- W4308128934 hasRelatedWork W4253838456 @default.
- W4308128934 hasRelatedWork W4301857073 @default.
- W4308128934 hasVolume "11" @default.
- W4308128934 isParatext "false" @default.
- W4308128934 isRetracted "false" @default.
- W4308128934 workType "article" @default.