Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308129968> ?p ?o ?g. }
- W4308129968 abstract "In neuroscience, the structural connectivity matrix of synaptic weights between neurons is one of the critical factors that determine the overall function of a network of neurons. The mechanisms of signal transduction have been intensively studied at different time and spatial scales and both the cellular and molecular levels. While a better understanding and knowledge of some basic processes of information handling by neurons has been achieved, little is known about the organization and function of complex neuronal networks. Experimental methods are now available to simultaneously monitor the electrical activity of a large number of neurons in real time. The analysis of the data related to the activities of individual neurons can become a very valuable tool for the study of the dynamics and architecture of neural networks. In particular, advances in optical imaging techniques allow us to record up to thousands of neurons nowadays. However, most of the efforts have been focused on calcium signals, that lack relevant aspects of cell activity. In recent years, progresses in the field of genetically encoded voltage indicators have shown that imaging signals could be well suited to record spiking and synaptic events from a large population of neurons. Here, we present a methodology to infer the connectivity of a population of neurons from their voltage traces. At first, putative synaptic events were detected. Then, a multi-class logistic regression was used to fit the putative events to the spiking activities and a penalization term was allowed to regulate the sparseness of the inferred network. The proposed Multi-Class Logistic Regression with L1 penalization (MCLRL) was benchmarked against data obtained from in silico network simulations. MCLRL properly inferred the connectivity of all tested networks, as indicated by the Matthew correlation coefficient (MCC). Importantly, MCLRL was accomplished to reconstruct the connectivity among subgroups of neurons sampled from the network. The robustness of MCLRL to noise was also assessed and the performances remained high ( MCC >0.95) even in extremely high noise conditions (>95% noisy events). Finally, we devised a procedure to determine the optimal MCLRL regularization term, which allows us to envision its application to experimental data." @default.
- W4308129968 created "2022-11-08" @default.
- W4308129968 creator A5004183860 @default.
- W4308129968 creator A5028290791 @default.
- W4308129968 creator A5062399881 @default.
- W4308129968 creator A5066357721 @default.
- W4308129968 creator A5086764953 @default.
- W4308129968 date "2022-11-02" @default.
- W4308129968 modified "2023-10-14" @default.
- W4308129968 title "A multi-class logistic regression algorithm to reliably infer network connectivity from cell membrane potentials" @default.
- W4308129968 cites W1792114746 @default.
- W4308129968 cites W1972160853 @default.
- W4308129968 cites W1988384534 @default.
- W4308129968 cites W1990389323 @default.
- W4308129968 cites W1999653836 @default.
- W4308129968 cites W2015567675 @default.
- W4308129968 cites W2042604093 @default.
- W4308129968 cites W2063094367 @default.
- W4308129968 cites W2064573518 @default.
- W4308129968 cites W2069519142 @default.
- W4308129968 cites W2069950623 @default.
- W4308129968 cites W2074818274 @default.
- W4308129968 cites W2087861759 @default.
- W4308129968 cites W2107566823 @default.
- W4308129968 cites W2155338866 @default.
- W4308129968 cites W2170612760 @default.
- W4308129968 cites W2176803657 @default.
- W4308129968 cites W2741610580 @default.
- W4308129968 cites W2743063852 @default.
- W4308129968 cites W2792406348 @default.
- W4308129968 cites W2888728157 @default.
- W4308129968 cites W2901244960 @default.
- W4308129968 cites W2951043812 @default.
- W4308129968 cites W2977873328 @default.
- W4308129968 cites W3020380091 @default.
- W4308129968 cites W3100889748 @default.
- W4308129968 cites W3125937743 @default.
- W4308129968 cites W4206941473 @default.
- W4308129968 cites W4220756323 @default.
- W4308129968 cites W4220928718 @default.
- W4308129968 cites W4229042538 @default.
- W4308129968 cites W4281643668 @default.
- W4308129968 cites W4301003819 @default.
- W4308129968 doi "https://doi.org/10.3389/fams.2022.1023310" @default.
- W4308129968 hasPublicationYear "2022" @default.
- W4308129968 type Work @default.
- W4308129968 citedByCount "0" @default.
- W4308129968 crossrefType "journal-article" @default.
- W4308129968 hasAuthorship W4308129968A5004183860 @default.
- W4308129968 hasAuthorship W4308129968A5028290791 @default.
- W4308129968 hasAuthorship W4308129968A5062399881 @default.
- W4308129968 hasAuthorship W4308129968A5066357721 @default.
- W4308129968 hasAuthorship W4308129968A5086764953 @default.
- W4308129968 hasBestOaLocation W43081299681 @default.
- W4308129968 hasConcept C119857082 @default.
- W4308129968 hasConcept C14036430 @default.
- W4308129968 hasConcept C144024400 @default.
- W4308129968 hasConcept C149923435 @default.
- W4308129968 hasConcept C153180895 @default.
- W4308129968 hasConcept C154945302 @default.
- W4308129968 hasConcept C169760540 @default.
- W4308129968 hasConcept C178790620 @default.
- W4308129968 hasConcept C185592680 @default.
- W4308129968 hasConcept C199360897 @default.
- W4308129968 hasConcept C2776032975 @default.
- W4308129968 hasConcept C2777212361 @default.
- W4308129968 hasConcept C2779843651 @default.
- W4308129968 hasConcept C2780196419 @default.
- W4308129968 hasConcept C2908647359 @default.
- W4308129968 hasConcept C41008148 @default.
- W4308129968 hasConcept C50644808 @default.
- W4308129968 hasConcept C519063684 @default.
- W4308129968 hasConcept C78458016 @default.
- W4308129968 hasConcept C86803240 @default.
- W4308129968 hasConceptScore W4308129968C119857082 @default.
- W4308129968 hasConceptScore W4308129968C14036430 @default.
- W4308129968 hasConceptScore W4308129968C144024400 @default.
- W4308129968 hasConceptScore W4308129968C149923435 @default.
- W4308129968 hasConceptScore W4308129968C153180895 @default.
- W4308129968 hasConceptScore W4308129968C154945302 @default.
- W4308129968 hasConceptScore W4308129968C169760540 @default.
- W4308129968 hasConceptScore W4308129968C178790620 @default.
- W4308129968 hasConceptScore W4308129968C185592680 @default.
- W4308129968 hasConceptScore W4308129968C199360897 @default.
- W4308129968 hasConceptScore W4308129968C2776032975 @default.
- W4308129968 hasConceptScore W4308129968C2777212361 @default.
- W4308129968 hasConceptScore W4308129968C2779843651 @default.
- W4308129968 hasConceptScore W4308129968C2780196419 @default.
- W4308129968 hasConceptScore W4308129968C2908647359 @default.
- W4308129968 hasConceptScore W4308129968C41008148 @default.
- W4308129968 hasConceptScore W4308129968C50644808 @default.
- W4308129968 hasConceptScore W4308129968C519063684 @default.
- W4308129968 hasConceptScore W4308129968C78458016 @default.
- W4308129968 hasConceptScore W4308129968C86803240 @default.
- W4308129968 hasLocation W43081299681 @default.
- W4308129968 hasLocation W43081299682 @default.
- W4308129968 hasOpenAccess W4308129968 @default.
- W4308129968 hasPrimaryLocation W43081299681 @default.
- W4308129968 hasRelatedWork W1967695195 @default.
- W4308129968 hasRelatedWork W2014674912 @default.