Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308147718> ?p ?o ?g. }
- W4308147718 endingPage "10067" @default.
- W4308147718 startingPage "10059" @default.
- W4308147718 abstract "Exploration of new infrared nonlinear optical (NLO) materials is urgently needed owing to the lack of high-performance crystals to break through strict conditions of wide band gaps, large NLO coefficients, and a high laser-induced damage threshold. Herein, the high-throughput prediction strategy has been implemented, and a series of predicted nitrides in the AII–M–N systems (AII = Mg, Ca, Sr, Ba, Zn; M = Si, Ge) with the stoichiometric ratios 1:6:8, 1:7:10, 2:5:8, 5:2:6, and 1:1:2 are discovered. Among them, six diamond-like nitrides with the stoichiometric ratio of 1:1:2 are highlighted, namely, Pna21-AIISiN2 (AII = Ca, Sr) (Z = 4), Pna21-AIIGeN2 (AII = Sr, Ba) (Z = 4), and I42d-AIIGeN2 (AII = Mg, Ca) (Z = 4). The six diamond-like nitrides realize a balance between large NLO coefficients 0.5–2.0 × AgGaS2 (d36 = 13.4 pm/V) and wide band gaps of 3.30–4.72 eV due to the strong covalent interaction in M–N (M = Si, Ge) bonds. Simultaneously, the six diamond-like nitrides exhibit high Debye temperatures (634.4–913.1 K), which are beneficial to improving their thermal conductivities. Typically, the thermal conductivities at 300 K are 2.9 W/(m·K) for Pna21-BaGeN2, 4.4 W/(m·K) for Pna21-SrSiN2, and 11.7 W/(m·K) for I42d-CaGeN2, which are larger than that of the infrared benchmark AgGaS2 (1.4 W/(m·K)). This study will provide an insight into explore new infrared NLO materials with high thermal conductivity in diamond-like nitrides." @default.
- W4308147718 created "2022-11-08" @default.
- W4308147718 creator A5014128774 @default.
- W4308147718 creator A5041700255 @default.
- W4308147718 creator A5058667627 @default.
- W4308147718 creator A5066774717 @default.
- W4308147718 creator A5068751967 @default.
- W4308147718 creator A5090456026 @default.
- W4308147718 date "2022-11-02" @default.
- W4308147718 modified "2023-10-16" @default.
- W4308147718 title "Predicting Diamond-like Nitrides as Infrared Nonlinear Optical Materials with High Thermal Conductivity" @default.
- W4308147718 cites W1508217084 @default.
- W4308147718 cites W1695703141 @default.
- W4308147718 cites W1754932684 @default.
- W4308147718 cites W1971939712 @default.
- W4308147718 cites W1973914966 @default.
- W4308147718 cites W1981368803 @default.
- W4308147718 cites W1988762313 @default.
- W4308147718 cites W1994880295 @default.
- W4308147718 cites W1999242781 @default.
- W4308147718 cites W2007395042 @default.
- W4308147718 cites W2007763726 @default.
- W4308147718 cites W2017413978 @default.
- W4308147718 cites W2024330948 @default.
- W4308147718 cites W2030330123 @default.
- W4308147718 cites W2031393458 @default.
- W4308147718 cites W2031487813 @default.
- W4308147718 cites W2036801653 @default.
- W4308147718 cites W2039627308 @default.
- W4308147718 cites W2040182267 @default.
- W4308147718 cites W2051525935 @default.
- W4308147718 cites W2054121315 @default.
- W4308147718 cites W2058742631 @default.
- W4308147718 cites W2062552047 @default.
- W4308147718 cites W2067934217 @default.
- W4308147718 cites W2083222334 @default.
- W4308147718 cites W2088215266 @default.
- W4308147718 cites W2091653743 @default.
- W4308147718 cites W2135773137 @default.
- W4308147718 cites W2153882824 @default.
- W4308147718 cites W2156708097 @default.
- W4308147718 cites W2159752439 @default.
- W4308147718 cites W2330266625 @default.
- W4308147718 cites W2334327368 @default.
- W4308147718 cites W2336654850 @default.
- W4308147718 cites W2418462194 @default.
- W4308147718 cites W2438289398 @default.
- W4308147718 cites W2555434595 @default.
- W4308147718 cites W2563583614 @default.
- W4308147718 cites W2573878556 @default.
- W4308147718 cites W2592339122 @default.
- W4308147718 cites W2602804263 @default.
- W4308147718 cites W2739026302 @default.
- W4308147718 cites W2753980310 @default.
- W4308147718 cites W2758161021 @default.
- W4308147718 cites W2771339168 @default.
- W4308147718 cites W2774567265 @default.
- W4308147718 cites W2783497591 @default.
- W4308147718 cites W2790968295 @default.
- W4308147718 cites W2801193404 @default.
- W4308147718 cites W2808353961 @default.
- W4308147718 cites W2887148021 @default.
- W4308147718 cites W2892035272 @default.
- W4308147718 cites W2896459552 @default.
- W4308147718 cites W2896643713 @default.
- W4308147718 cites W2953129065 @default.
- W4308147718 cites W2981629815 @default.
- W4308147718 cites W2993145839 @default.
- W4308147718 cites W2995116823 @default.
- W4308147718 cites W3017172664 @default.
- W4308147718 cites W3039936103 @default.
- W4308147718 cites W3042520095 @default.
- W4308147718 cites W3090071506 @default.
- W4308147718 cites W3096004817 @default.
- W4308147718 cites W3107057801 @default.
- W4308147718 cites W3115690459 @default.
- W4308147718 cites W3120849508 @default.
- W4308147718 cites W3128860682 @default.
- W4308147718 cites W3174985196 @default.
- W4308147718 cites W3186256422 @default.
- W4308147718 cites W3198740165 @default.
- W4308147718 cites W3201680705 @default.
- W4308147718 cites W3211319475 @default.
- W4308147718 cites W3212815014 @default.
- W4308147718 cites W4200343920 @default.
- W4308147718 cites W4214887894 @default.
- W4308147718 cites W4229766111 @default.
- W4308147718 cites W4246497097 @default.
- W4308147718 cites W4281975869 @default.
- W4308147718 cites W4282937708 @default.
- W4308147718 doi "https://doi.org/10.1021/acs.chemmater.2c02578" @default.
- W4308147718 hasPublicationYear "2022" @default.
- W4308147718 type Work @default.
- W4308147718 citedByCount "4" @default.
- W4308147718 countsByYear W43081477182023 @default.
- W4308147718 crossrefType "journal-article" @default.
- W4308147718 hasAuthorship W4308147718A5014128774 @default.
- W4308147718 hasAuthorship W4308147718A5041700255 @default.