Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308153372> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W4308153372 endingPage "363" @default.
- W4308153372 startingPage "359" @default.
- W4308153372 abstract "In this work, artificial neural network (ANN), a machine learning technique is applied in the field of stress recovery in finite element analysis (FEA). The most crucial design factor in structural analysis is stress. However, stresses calculated directly from FEA, are not accurate except at a few points called the super-convergent points. The stresses at the super-convergent points are targeted to map stress field using ANN for the whole domain. A higher-order element is used to calculate the reference stress values. The errors are calculated in the absolute sense and the results are compared with the superconvergent patch recovery (SPR) technique and also with the directly calculated stresses. Multiple mesh sizes are used to check the convergence with mesh refinement. The Cook’s skew beam problem is solved to apply the stress recovery using ANN." @default.
- W4308153372 created "2022-11-08" @default.
- W4308153372 creator A5008932081 @default.
- W4308153372 creator A5021604391 @default.
- W4308153372 creator A5032699463 @default.
- W4308153372 date "2023-01-01" @default.
- W4308153372 modified "2023-09-26" @default.
- W4308153372 title "Application of machine learning in efficient stress recovery in finite element analysis" @default.
- W4308153372 cites W2044892973 @default.
- W4308153372 cites W2060131826 @default.
- W4308153372 cites W2137620714 @default.
- W4308153372 cites W2261676784 @default.
- W4308153372 cites W2753246113 @default.
- W4308153372 cites W2969434896 @default.
- W4308153372 cites W3037251966 @default.
- W4308153372 cites W3048332795 @default.
- W4308153372 cites W3084276559 @default.
- W4308153372 cites W3107934627 @default.
- W4308153372 cites W3117952636 @default.
- W4308153372 cites W3126242828 @default.
- W4308153372 cites W3209671989 @default.
- W4308153372 cites W4286438561 @default.
- W4308153372 doi "https://doi.org/10.1016/j.matpr.2022.10.100" @default.
- W4308153372 hasPublicationYear "2023" @default.
- W4308153372 type Work @default.
- W4308153372 citedByCount "2" @default.
- W4308153372 countsByYear W43081533722023 @default.
- W4308153372 crossrefType "journal-article" @default.
- W4308153372 hasAuthorship W4308153372A5008932081 @default.
- W4308153372 hasAuthorship W4308153372A5021604391 @default.
- W4308153372 hasAuthorship W4308153372A5032699463 @default.
- W4308153372 hasConcept C127413603 @default.
- W4308153372 hasConcept C135628077 @default.
- W4308153372 hasConcept C138885662 @default.
- W4308153372 hasConcept C21036866 @default.
- W4308153372 hasConcept C41008148 @default.
- W4308153372 hasConcept C41895202 @default.
- W4308153372 hasConcept C66938386 @default.
- W4308153372 hasConceptScore W4308153372C127413603 @default.
- W4308153372 hasConceptScore W4308153372C135628077 @default.
- W4308153372 hasConceptScore W4308153372C138885662 @default.
- W4308153372 hasConceptScore W4308153372C21036866 @default.
- W4308153372 hasConceptScore W4308153372C41008148 @default.
- W4308153372 hasConceptScore W4308153372C41895202 @default.
- W4308153372 hasConceptScore W4308153372C66938386 @default.
- W4308153372 hasFunder F4320320719 @default.
- W4308153372 hasFunder F4320320722 @default.
- W4308153372 hasFunder F4320334771 @default.
- W4308153372 hasFunder F4320336526 @default.
- W4308153372 hasLocation W43081533721 @default.
- W4308153372 hasOpenAccess W4308153372 @default.
- W4308153372 hasPrimaryLocation W43081533721 @default.
- W4308153372 hasRelatedWork W2026628195 @default.
- W4308153372 hasRelatedWork W2116569921 @default.
- W4308153372 hasRelatedWork W2360973016 @default.
- W4308153372 hasRelatedWork W2368578591 @default.
- W4308153372 hasRelatedWork W2379448095 @default.
- W4308153372 hasRelatedWork W2384731605 @default.
- W4308153372 hasRelatedWork W2400153779 @default.
- W4308153372 hasRelatedWork W2599991972 @default.
- W4308153372 hasRelatedWork W2771135319 @default.
- W4308153372 hasRelatedWork W3110367033 @default.
- W4308153372 hasVolume "78" @default.
- W4308153372 isParatext "false" @default.
- W4308153372 isRetracted "false" @default.
- W4308153372 workType "article" @default.