Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308155114> ?p ?o ?g. }
- W4308155114 endingPage "102432" @default.
- W4308155114 startingPage "102432" @default.
- W4308155114 abstract "In assisted reproductive technology (ART), embryos produced by in vitro fertilization (IVF) are graded according to their live birth potential, and high-grade embryos are preferentially transplanted. However, rates of live birth following clinical ART remain low worldwide. Grading is based on the embryo shape at a limited number of stages and does not consider the shape of embryos and intracellular structures, e.g., nuclei, at various stages important for normal embryogenesis. Here, we developed a Normalized Multi-View Attention Network (NVAN) that directly predicts live birth potential from the nuclear structure in live-cell fluorescence images of mouse embryos from zygote to across a wide range of stages. The input is morphological features of cell nuclei, which were extracted as multivariate time-series data by using the segmentation algorithm for mouse embryos. The classification accuracy of our method (83.87%) greatly exceeded that of existing machine-learning methods and that of visual inspection by embryo culture specialists. Our method also has a new attention mechanism that allows us to determine which values of multivariate time-series data, used to describe nuclear morphology, were the basis for the prediction. By visualizing the features that contributed most to the prediction of live birth potential, we found that the size and shape of the nucleus at the morula stage and at the time of cell division were important for live birth prediction. We anticipate that our method will help ART and developmental engineering as a new basic technology for IVF embryo selection." @default.
- W4308155114 created "2022-11-08" @default.
- W4308155114 creator A5012324850 @default.
- W4308155114 creator A5015869115 @default.
- W4308155114 creator A5035702067 @default.
- W4308155114 creator A5087532293 @default.
- W4308155114 creator A5087813809 @default.
- W4308155114 creator A5091016531 @default.
- W4308155114 creator A5091706585 @default.
- W4308155114 date "2022-12-01" @default.
- W4308155114 modified "2023-10-03" @default.
- W4308155114 title "An explainable deep learning-based algorithm with an attention mechanism for predicting the live birth potential of mouse embryos" @default.
- W4308155114 cites W2011946635 @default.
- W4308155114 cites W2029167947 @default.
- W4308155114 cites W2044284467 @default.
- W4308155114 cites W2064675550 @default.
- W4308155114 cites W2080018890 @default.
- W4308155114 cites W2083721794 @default.
- W4308155114 cites W2086610488 @default.
- W4308155114 cites W2100550899 @default.
- W4308155114 cites W2109334201 @default.
- W4308155114 cites W2112198083 @default.
- W4308155114 cites W2131774270 @default.
- W4308155114 cites W2135991122 @default.
- W4308155114 cites W2160704433 @default.
- W4308155114 cites W2162480880 @default.
- W4308155114 cites W2168301250 @default.
- W4308155114 cites W2316599784 @default.
- W4308155114 cites W2395146274 @default.
- W4308155114 cites W2553915786 @default.
- W4308155114 cites W2578411016 @default.
- W4308155114 cites W2588743371 @default.
- W4308155114 cites W2744868300 @default.
- W4308155114 cites W2750384459 @default.
- W4308155114 cites W2792562321 @default.
- W4308155114 cites W2901194671 @default.
- W4308155114 cites W2927960701 @default.
- W4308155114 cites W2966153025 @default.
- W4308155114 cites W2986173569 @default.
- W4308155114 cites W2993122943 @default.
- W4308155114 cites W2995833348 @default.
- W4308155114 cites W3002833608 @default.
- W4308155114 cites W3026931681 @default.
- W4308155114 cites W3093569261 @default.
- W4308155114 cites W3100708836 @default.
- W4308155114 cites W3133306532 @default.
- W4308155114 cites W3136418969 @default.
- W4308155114 cites W4205754343 @default.
- W4308155114 cites W4206437483 @default.
- W4308155114 doi "https://doi.org/10.1016/j.artmed.2022.102432" @default.
- W4308155114 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36462898" @default.
- W4308155114 hasPublicationYear "2022" @default.
- W4308155114 type Work @default.
- W4308155114 citedByCount "1" @default.
- W4308155114 countsByYear W43081551142023 @default.
- W4308155114 crossrefType "journal-article" @default.
- W4308155114 hasAuthorship W4308155114A5012324850 @default.
- W4308155114 hasAuthorship W4308155114A5015869115 @default.
- W4308155114 hasAuthorship W4308155114A5035702067 @default.
- W4308155114 hasAuthorship W4308155114A5087532293 @default.
- W4308155114 hasAuthorship W4308155114A5087813809 @default.
- W4308155114 hasAuthorship W4308155114A5091016531 @default.
- W4308155114 hasAuthorship W4308155114A5091706585 @default.
- W4308155114 hasConcept C119857082 @default.
- W4308155114 hasConcept C1491633281 @default.
- W4308155114 hasConcept C153180895 @default.
- W4308155114 hasConcept C154945302 @default.
- W4308155114 hasConcept C15526883 @default.
- W4308155114 hasConcept C196843134 @default.
- W4308155114 hasConcept C2778279030 @default.
- W4308155114 hasConcept C2779234561 @default.
- W4308155114 hasConcept C28748434 @default.
- W4308155114 hasConcept C41008148 @default.
- W4308155114 hasConcept C54355233 @default.
- W4308155114 hasConcept C60644358 @default.
- W4308155114 hasConcept C86803240 @default.
- W4308155114 hasConcept C87073359 @default.
- W4308155114 hasConcept C89600930 @default.
- W4308155114 hasConceptScore W4308155114C119857082 @default.
- W4308155114 hasConceptScore W4308155114C1491633281 @default.
- W4308155114 hasConceptScore W4308155114C153180895 @default.
- W4308155114 hasConceptScore W4308155114C154945302 @default.
- W4308155114 hasConceptScore W4308155114C15526883 @default.
- W4308155114 hasConceptScore W4308155114C196843134 @default.
- W4308155114 hasConceptScore W4308155114C2778279030 @default.
- W4308155114 hasConceptScore W4308155114C2779234561 @default.
- W4308155114 hasConceptScore W4308155114C28748434 @default.
- W4308155114 hasConceptScore W4308155114C41008148 @default.
- W4308155114 hasConceptScore W4308155114C54355233 @default.
- W4308155114 hasConceptScore W4308155114C60644358 @default.
- W4308155114 hasConceptScore W4308155114C86803240 @default.
- W4308155114 hasConceptScore W4308155114C87073359 @default.
- W4308155114 hasConceptScore W4308155114C89600930 @default.
- W4308155114 hasFunder F4320334764 @default.
- W4308155114 hasFunder F4320334789 @default.
- W4308155114 hasFunder F4320338075 @default.
- W4308155114 hasLocation W43081551141 @default.
- W4308155114 hasLocation W43081551142 @default.