Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308156312> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W4308156312 endingPage "162" @default.
- W4308156312 startingPage "151" @default.
- W4308156312 abstract "This paper concerns multivariate machine learning-based prediction models of freeway traffic flow under non-recurrent events. Five model architectures based on the multi-layer perceptron (MLP), convolutional neural network (CNN), long short-term memory (LSTM), CNN-LSTM and Autoencoder LSTM networks have been developed to predict traffic flow under a road crash and the rain. Using an input dataset with five features (the flow rate, the speed, and the density, road incident and rainfall) and two standard metrics (the Root Mean Square error and the Mean Absolute error), models’ performance is evaluated." @default.
- W4308156312 created "2022-11-08" @default.
- W4308156312 creator A5011598965 @default.
- W4308156312 creator A5047022202 @default.
- W4308156312 creator A5077245230 @default.
- W4308156312 date "2023-02-01" @default.
- W4308156312 modified "2023-10-16" @default.
- W4308156312 title "Multivariate machine learning-based prediction models of freeway traffic flow under non-recurrent events" @default.
- W4308156312 cites W1973943669 @default.
- W4308156312 cites W2064675550 @default.
- W4308156312 cites W2110832536 @default.
- W4308156312 cites W2117731089 @default.
- W4308156312 cites W2132711183 @default.
- W4308156312 cites W2136848157 @default.
- W4308156312 cites W2160507653 @default.
- W4308156312 cites W2160815625 @default.
- W4308156312 cites W2168893862 @default.
- W4308156312 cites W2171234954 @default.
- W4308156312 cites W2518582440 @default.
- W4308156312 cites W2754252319 @default.
- W4308156312 cites W2789819752 @default.
- W4308156312 cites W2804948039 @default.
- W4308156312 cites W2886287742 @default.
- W4308156312 cites W2899443545 @default.
- W4308156312 cites W2907228515 @default.
- W4308156312 cites W2923146325 @default.
- W4308156312 cites W2980820804 @default.
- W4308156312 cites W2999045768 @default.
- W4308156312 cites W3010941533 @default.
- W4308156312 cites W3014404134 @default.
- W4308156312 cites W3015927450 @default.
- W4308156312 cites W3023559152 @default.
- W4308156312 cites W3033688252 @default.
- W4308156312 cites W3035338169 @default.
- W4308156312 cites W3038969758 @default.
- W4308156312 cites W3091641260 @default.
- W4308156312 cites W3097367458 @default.
- W4308156312 cites W3103942004 @default.
- W4308156312 cites W4200099066 @default.
- W4308156312 doi "https://doi.org/10.1016/j.aej.2022.10.015" @default.
- W4308156312 hasPublicationYear "2023" @default.
- W4308156312 type Work @default.
- W4308156312 citedByCount "1" @default.
- W4308156312 countsByYear W43081563122023 @default.
- W4308156312 crossrefType "journal-article" @default.
- W4308156312 hasAuthorship W4308156312A5011598965 @default.
- W4308156312 hasAuthorship W4308156312A5047022202 @default.
- W4308156312 hasAuthorship W4308156312A5077245230 @default.
- W4308156312 hasBestOaLocation W43081563121 @default.
- W4308156312 hasConcept C101738243 @default.
- W4308156312 hasConcept C105795698 @default.
- W4308156312 hasConcept C119857082 @default.
- W4308156312 hasConcept C139945424 @default.
- W4308156312 hasConcept C147168706 @default.
- W4308156312 hasConcept C154945302 @default.
- W4308156312 hasConcept C161584116 @default.
- W4308156312 hasConcept C179717631 @default.
- W4308156312 hasConcept C207512268 @default.
- W4308156312 hasConcept C33923547 @default.
- W4308156312 hasConcept C38652104 @default.
- W4308156312 hasConcept C41008148 @default.
- W4308156312 hasConcept C50644808 @default.
- W4308156312 hasConcept C60908668 @default.
- W4308156312 hasConcept C81363708 @default.
- W4308156312 hasConceptScore W4308156312C101738243 @default.
- W4308156312 hasConceptScore W4308156312C105795698 @default.
- W4308156312 hasConceptScore W4308156312C119857082 @default.
- W4308156312 hasConceptScore W4308156312C139945424 @default.
- W4308156312 hasConceptScore W4308156312C147168706 @default.
- W4308156312 hasConceptScore W4308156312C154945302 @default.
- W4308156312 hasConceptScore W4308156312C161584116 @default.
- W4308156312 hasConceptScore W4308156312C179717631 @default.
- W4308156312 hasConceptScore W4308156312C207512268 @default.
- W4308156312 hasConceptScore W4308156312C33923547 @default.
- W4308156312 hasConceptScore W4308156312C38652104 @default.
- W4308156312 hasConceptScore W4308156312C41008148 @default.
- W4308156312 hasConceptScore W4308156312C50644808 @default.
- W4308156312 hasConceptScore W4308156312C60908668 @default.
- W4308156312 hasConceptScore W4308156312C81363708 @default.
- W4308156312 hasLocation W43081563121 @default.
- W4308156312 hasOpenAccess W4308156312 @default.
- W4308156312 hasPrimaryLocation W43081563121 @default.
- W4308156312 hasRelatedWork W1489969923 @default.
- W4308156312 hasRelatedWork W1900570967 @default.
- W4308156312 hasRelatedWork W2038329751 @default.
- W4308156312 hasRelatedWork W2091943352 @default.
- W4308156312 hasRelatedWork W2158671777 @default.
- W4308156312 hasRelatedWork W2749461815 @default.
- W4308156312 hasRelatedWork W2890929759 @default.
- W4308156312 hasRelatedWork W4226023263 @default.
- W4308156312 hasRelatedWork W4231994957 @default.
- W4308156312 hasRelatedWork W4285741730 @default.
- W4308156312 hasVolume "65" @default.
- W4308156312 isParatext "false" @default.
- W4308156312 isRetracted "false" @default.
- W4308156312 workType "article" @default.