Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308156775> ?p ?o ?g. }
- W4308156775 endingPage "151" @default.
- W4308156775 startingPage "139" @default.
- W4308156775 abstract "Accurate and reliable measurement of key biological parameters during penicillin fermentation is of great significance for improving penicillin production. In this research context, a new hybrid soft sensor model method based on RF-IHHO-LSTM (random forest-improved Harris hawks optimization-long short-term memory) is proposed for penicillin fermentation processes. Firstly, random forest (RF) is used for feature selection of the auxiliary variables for penicillin. Next, improvements are made for the Harris hawks optimization (HHO) algorithm, including using elite opposition-based learning strategy (EOBL) in initialization to enhance the population diversity, and using golden sine algorithm (Gold-SA) in the search strategy to make the algorithm accelerate convergence. Then the long short-term memory (LSTM) network is constructed to build a soft sensor model of penicillin fermentation processes. Finally, the hybrid soft sensor model is used to the Pensim platform in simulation experimental research. The simulation test results show that the established soft sensor model, with high accuracy of measurement and good effect, can meet the actual requirements of engineering." @default.
- W4308156775 created "2022-11-08" @default.
- W4308156775 creator A5003783734 @default.
- W4308156775 creator A5016680901 @default.
- W4308156775 creator A5027907101 @default.
- W4308156775 creator A5042016293 @default.
- W4308156775 creator A5063386326 @default.
- W4308156775 creator A5075103342 @default.
- W4308156775 date "2023-05-01" @default.
- W4308156775 modified "2023-10-17" @default.
- W4308156775 title "An evolutionary deep learning soft sensor model based on random forest feature selection technique for penicillin fermentation process" @default.
- W4308156775 cites W2052626629 @default.
- W4308156775 cites W2064675550 @default.
- W4308156775 cites W2094664037 @default.
- W4308156775 cites W2110227608 @default.
- W4308156775 cites W2183002771 @default.
- W4308156775 cites W2201252546 @default.
- W4308156775 cites W2231086974 @default.
- W4308156775 cites W2767246663 @default.
- W4308156775 cites W2883391780 @default.
- W4308156775 cites W2904396791 @default.
- W4308156775 cites W2910548466 @default.
- W4308156775 cites W2911964244 @default.
- W4308156775 cites W2919979744 @default.
- W4308156775 cites W2920714358 @default.
- W4308156775 cites W2979040405 @default.
- W4308156775 cites W3007389203 @default.
- W4308156775 cites W3018946592 @default.
- W4308156775 cites W3113362706 @default.
- W4308156775 cites W3115245453 @default.
- W4308156775 cites W3123712479 @default.
- W4308156775 cites W3127409731 @default.
- W4308156775 cites W3132088601 @default.
- W4308156775 cites W3138784438 @default.
- W4308156775 cites W3174510944 @default.
- W4308156775 cites W3184266411 @default.
- W4308156775 cites W3189458937 @default.
- W4308156775 cites W3190052090 @default.
- W4308156775 cites W3191089618 @default.
- W4308156775 cites W3199449770 @default.
- W4308156775 cites W3210548649 @default.
- W4308156775 cites W4200372662 @default.
- W4308156775 cites W4212881035 @default.
- W4308156775 cites W4213051910 @default.
- W4308156775 cites W4213349821 @default.
- W4308156775 cites W4214576062 @default.
- W4308156775 cites W4214810854 @default.
- W4308156775 cites W4220665721 @default.
- W4308156775 cites W4220998950 @default.
- W4308156775 cites W4221029294 @default.
- W4308156775 cites W4221035317 @default.
- W4308156775 cites W4221051301 @default.
- W4308156775 cites W4221067162 @default.
- W4308156775 cites W4224912639 @default.
- W4308156775 cites W4225320732 @default.
- W4308156775 cites W4226073007 @default.
- W4308156775 cites W4226460078 @default.
- W4308156775 cites W4280494158 @default.
- W4308156775 cites W4283644288 @default.
- W4308156775 cites W4288901784 @default.
- W4308156775 cites W4297911728 @default.
- W4308156775 cites W4229062855 @default.
- W4308156775 doi "https://doi.org/10.1016/j.isatra.2022.10.044" @default.
- W4308156775 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36404151" @default.
- W4308156775 hasPublicationYear "2023" @default.
- W4308156775 type Work @default.
- W4308156775 citedByCount "4" @default.
- W4308156775 countsByYear W43081567752023 @default.
- W4308156775 crossrefType "journal-article" @default.
- W4308156775 hasAuthorship W4308156775A5003783734 @default.
- W4308156775 hasAuthorship W4308156775A5016680901 @default.
- W4308156775 hasAuthorship W4308156775A5027907101 @default.
- W4308156775 hasAuthorship W4308156775A5042016293 @default.
- W4308156775 hasAuthorship W4308156775A5063386326 @default.
- W4308156775 hasAuthorship W4308156775A5075103342 @default.
- W4308156775 hasConcept C111919701 @default.
- W4308156775 hasConcept C114466953 @default.
- W4308156775 hasConcept C115575686 @default.
- W4308156775 hasConcept C119857082 @default.
- W4308156775 hasConcept C144024400 @default.
- W4308156775 hasConcept C148483581 @default.
- W4308156775 hasConcept C149923435 @default.
- W4308156775 hasConcept C154945302 @default.
- W4308156775 hasConcept C169258074 @default.
- W4308156775 hasConcept C199360897 @default.
- W4308156775 hasConcept C22019652 @default.
- W4308156775 hasConcept C2908647359 @default.
- W4308156775 hasConcept C41008148 @default.
- W4308156775 hasConcept C50644808 @default.
- W4308156775 hasConcept C97541855 @default.
- W4308156775 hasConcept C98045186 @default.
- W4308156775 hasConceptScore W4308156775C111919701 @default.
- W4308156775 hasConceptScore W4308156775C114466953 @default.
- W4308156775 hasConceptScore W4308156775C115575686 @default.
- W4308156775 hasConceptScore W4308156775C119857082 @default.
- W4308156775 hasConceptScore W4308156775C144024400 @default.
- W4308156775 hasConceptScore W4308156775C148483581 @default.
- W4308156775 hasConceptScore W4308156775C149923435 @default.