Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308156972> ?p ?o ?g. }
- W4308156972 endingPage "115319" @default.
- W4308156972 startingPage "115319" @default.
- W4308156972 abstract "Impact ionization time of flight mass spectrometry (TOF-MS) instruments study molecular composition of space-borne dust grains by impacting them at several km/s. The kinetic energy of the impact ionizes molecules from the dust grain, allowing them to be characterized with TOF-MS. The ability of these instruments to assess the inventory and distribution of organics throughout the solar system is important for understanding habitability across planetary bodies and the origins of terrestrial life. In particular, it would be beneficial to know whether this type of instrument can successfully detect amino acids, or other organics necessary for life that may be found on potentially habitable ocean worlds such as Europa. However, there have been questions about whether the fast impact ionization processes can shatter complex organic molecules before they can be studied, and if there is some critical flyby velocity below which fragmentation can be mitigated. Here we describe a set of experiments using a novel airbrushing technique for ice creation at the Colorado Dust Accelerator at the Institute for Modeling Plasmas, Atmospheres, and Cosmic Dust (IMPACT). Experiment 1 used a surface of pure histidine-monohydrochloride, and Experiment 2 used an identical histidine sample, except with a 60 nm water ice layer vapor deposited on top. These surfaces were kept at ∼ 80 Kelvin and impacted by < 2 μ m-diameter iron dust particles at velocities ¿ 3 km/s. The resulting impact plumes were studied using TOF-MS, and the ion yields of fragmentation products relative to the parent molecule were measured. Direct comparison of the breakup products for each experiment show that water ice layers significantly reduce fragmentation rates, both in absolute terms and as functions of velocity. We find that for the bare amino acid, the fragmentation rate rises significantly beyond 6.1 km/s, while the ice-shielded amino acid shows significant increases beyond 8.5 km/s. Furthermore, observed fragmentation species correlate with those produced by published results from electron ionization experiments. In particular, we observe characteristic breakup products for histidine at masses 81–83 and 110 AMU, the dominant breakup products associated with histidine in the existing literature. • Micron-scale dust accelerated into histidine-bearing water ice at 3-15 km/s. • For impacts ¡ 6 km/s, organic fragmentation rates are largely constant. • For bare histidine, fragmentation rates increase dramatically beyond 6.1 km/s. • For histidine under 60 nm of water ice, fragmentation rates increase beyond 8.5 km/s • A 60 nm water ice layer reduced organic fragmentation rates by a factor of about 2. • Fragmentation products correlate with those found in electron ionization spectra. • Characteristic fragmentation products for histidine were found at 81-83 and 110 AMU." @default.
- W4308156972 created "2022-11-08" @default.
- W4308156972 creator A5003849920 @default.
- W4308156972 creator A5027965613 @default.
- W4308156972 creator A5029878705 @default.
- W4308156972 creator A5035108318 @default.
- W4308156972 creator A5050036486 @default.
- W4308156972 creator A5052346160 @default.
- W4308156972 creator A5057868914 @default.
- W4308156972 date "2023-02-01" @default.
- W4308156972 modified "2023-10-18" @default.
- W4308156972 title "Detection of the amino acid histidine and its breakup products in hypervelocity impact ice spectra" @default.
- W4308156972 cites W1534227776 @default.
- W4308156972 cites W1542859538 @default.
- W4308156972 cites W1971472641 @default.
- W4308156972 cites W1973740431 @default.
- W4308156972 cites W1982563669 @default.
- W4308156972 cites W1984942588 @default.
- W4308156972 cites W1987076206 @default.
- W4308156972 cites W1995383461 @default.
- W4308156972 cites W1999119691 @default.
- W4308156972 cites W2001254702 @default.
- W4308156972 cites W2003047622 @default.
- W4308156972 cites W2014904726 @default.
- W4308156972 cites W2025133491 @default.
- W4308156972 cites W2033324678 @default.
- W4308156972 cites W2042703828 @default.
- W4308156972 cites W2047596259 @default.
- W4308156972 cites W2073401456 @default.
- W4308156972 cites W2077554378 @default.
- W4308156972 cites W2077727305 @default.
- W4308156972 cites W2106694690 @default.
- W4308156972 cites W2118866360 @default.
- W4308156972 cites W2129916370 @default.
- W4308156972 cites W2139494391 @default.
- W4308156972 cites W2142970696 @default.
- W4308156972 cites W2166389420 @default.
- W4308156972 cites W2281185793 @default.
- W4308156972 cites W2803096359 @default.
- W4308156972 cites W2805787529 @default.
- W4308156972 cites W2809669836 @default.
- W4308156972 cites W2895952681 @default.
- W4308156972 cites W2897449364 @default.
- W4308156972 cites W2956537164 @default.
- W4308156972 cites W2977580119 @default.
- W4308156972 cites W2995164691 @default.
- W4308156972 cites W3001348281 @default.
- W4308156972 cites W3020966184 @default.
- W4308156972 cites W3098469952 @default.
- W4308156972 cites W3103145119 @default.
- W4308156972 cites W3103619985 @default.
- W4308156972 cites W3105819805 @default.
- W4308156972 cites W3137325414 @default.
- W4308156972 cites W3183188805 @default.
- W4308156972 cites W3201394955 @default.
- W4308156972 doi "https://doi.org/10.1016/j.icarus.2022.115319" @default.
- W4308156972 hasPublicationYear "2023" @default.
- W4308156972 type Work @default.
- W4308156972 citedByCount "1" @default.
- W4308156972 countsByYear W43081569722023 @default.
- W4308156972 crossrefType "journal-article" @default.
- W4308156972 hasAuthorship W4308156972A5003849920 @default.
- W4308156972 hasAuthorship W4308156972A5027965613 @default.
- W4308156972 hasAuthorship W4308156972A5029878705 @default.
- W4308156972 hasAuthorship W4308156972A5035108318 @default.
- W4308156972 hasAuthorship W4308156972A5050036486 @default.
- W4308156972 hasAuthorship W4308156972A5052346160 @default.
- W4308156972 hasAuthorship W4308156972A5057868914 @default.
- W4308156972 hasConcept C117740565 @default.
- W4308156972 hasConcept C121332964 @default.
- W4308156972 hasConcept C127313418 @default.
- W4308156972 hasConcept C1276947 @default.
- W4308156972 hasConcept C192562407 @default.
- W4308156972 hasConcept C2777871205 @default.
- W4308156972 hasConcept C4839761 @default.
- W4308156972 hasConcept C57879066 @default.
- W4308156972 hasConcept C87355193 @default.
- W4308156972 hasConceptScore W4308156972C117740565 @default.
- W4308156972 hasConceptScore W4308156972C121332964 @default.
- W4308156972 hasConceptScore W4308156972C127313418 @default.
- W4308156972 hasConceptScore W4308156972C1276947 @default.
- W4308156972 hasConceptScore W4308156972C192562407 @default.
- W4308156972 hasConceptScore W4308156972C2777871205 @default.
- W4308156972 hasConceptScore W4308156972C4839761 @default.
- W4308156972 hasConceptScore W4308156972C57879066 @default.
- W4308156972 hasConceptScore W4308156972C87355193 @default.
- W4308156972 hasLocation W43081569721 @default.
- W4308156972 hasOpenAccess W4308156972 @default.
- W4308156972 hasPrimaryLocation W43081569721 @default.
- W4308156972 hasRelatedWork W1965224362 @default.
- W4308156972 hasRelatedWork W1978343384 @default.
- W4308156972 hasRelatedWork W2141229633 @default.
- W4308156972 hasRelatedWork W2171715461 @default.
- W4308156972 hasRelatedWork W2351879210 @default.
- W4308156972 hasRelatedWork W2372737951 @default.
- W4308156972 hasRelatedWork W2905139601 @default.
- W4308156972 hasRelatedWork W3009847264 @default.
- W4308156972 hasRelatedWork W4205130489 @default.