Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308160156> ?p ?o ?g. }
- W4308160156 endingPage "935" @default.
- W4308160156 startingPage "923" @default.
- W4308160156 abstract "In 2019, the world experienced the rapid outbreak of the Covid-19 pandemic creating an alarming situation worldwide. The virus targets the respiratory system causing pneumonia with other symptoms such as fatigue, dry cough, and fever which can be mistakenly diagnosed as pneumonia, lung cancer, or TB. Thus, the early diagnosis of COVID-19 is critical since the disease can provoke patients’ mortality. Chest X-ray (CXR) is commonly employed in healthcare sector where both quick and precise diagnosis can be supplied. Deep learning algorithms have proved extraordinary capabilities in terms of lung diseases detection and classification. They facilitate and expedite the diagnosis process and save time for the medical practitioners. In this paper, a deep learning (DL) architecture for multi-class classification of Pneumonia, Lung Cancer, tuberculosis (TB), Lung Opacity, and most recently COVID-19 is proposed. Tremendous CXR images of 3615 COVID-19, 6012 Lung opacity, 5870 Pneumonia, 20,000 lung cancer, 1400 tuberculosis, and 10,192 normal images were resized, normalized, and randomly split to fit the DL requirements. In terms of classification, we utilized a pre-trained model, VGG19 followed by three blocks of convolutional neural network (CNN) as a feature extraction and fully connected network at the classification stage. The experimental results revealed that our proposed VGG19 + CNN outperformed other existing work with 96.48 % accuracy, 93.75 % recall, 97.56 % precision, 95.62 % F1 score, and 99.82 % area under the curve (AUC). The proposed model delivered superior performance allowing healthcare practitioners to diagnose and treat patients more quickly and efficiently." @default.
- W4308160156 created "2022-11-08" @default.
- W4308160156 creator A5030032587 @default.
- W4308160156 creator A5044005980 @default.
- W4308160156 creator A5072202821 @default.
- W4308160156 creator A5083182498 @default.
- W4308160156 creator A5091759632 @default.
- W4308160156 date "2023-02-01" @default.
- W4308160156 modified "2023-10-14" @default.
- W4308160156 title "A deep learning architecture for multi-class lung diseases classification using chest X-ray (CXR) images" @default.
- W4308160156 cites W1994062553 @default.
- W4308160156 cites W2142514727 @default.
- W4308160156 cites W2743008510 @default.
- W4308160156 cites W2745075853 @default.
- W4308160156 cites W2802703689 @default.
- W4308160156 cites W2917143046 @default.
- W4308160156 cites W2924911266 @default.
- W4308160156 cites W2943040914 @default.
- W4308160156 cites W2959687571 @default.
- W4308160156 cites W2963480753 @default.
- W4308160156 cites W2968605358 @default.
- W4308160156 cites W3007212997 @default.
- W4308160156 cites W3011149445 @default.
- W4308160156 cites W3012254913 @default.
- W4308160156 cites W3015538848 @default.
- W4308160156 cites W3018007233 @default.
- W4308160156 cites W3024263255 @default.
- W4308160156 cites W3034635466 @default.
- W4308160156 cites W3038090612 @default.
- W4308160156 cites W3039358234 @default.
- W4308160156 cites W3046473234 @default.
- W4308160156 cites W3048670851 @default.
- W4308160156 cites W3080085601 @default.
- W4308160156 cites W3081748421 @default.
- W4308160156 cites W3097211536 @default.
- W4308160156 cites W3099183222 @default.
- W4308160156 cites W3105326651 @default.
- W4308160156 cites W3109289137 @default.
- W4308160156 cites W3129768930 @default.
- W4308160156 cites W3135243128 @default.
- W4308160156 cites W3155091372 @default.
- W4308160156 cites W3159001838 @default.
- W4308160156 cites W3162351260 @default.
- W4308160156 cites W3168156287 @default.
- W4308160156 cites W3170168153 @default.
- W4308160156 cites W3170497404 @default.
- W4308160156 cites W3172444062 @default.
- W4308160156 cites W3176429669 @default.
- W4308160156 cites W4212881316 @default.
- W4308160156 cites W4225113120 @default.
- W4308160156 cites W4232097126 @default.
- W4308160156 doi "https://doi.org/10.1016/j.aej.2022.10.053" @default.
- W4308160156 hasPublicationYear "2023" @default.
- W4308160156 type Work @default.
- W4308160156 citedByCount "12" @default.
- W4308160156 countsByYear W43081601562023 @default.
- W4308160156 crossrefType "journal-article" @default.
- W4308160156 hasAuthorship W4308160156A5030032587 @default.
- W4308160156 hasAuthorship W4308160156A5044005980 @default.
- W4308160156 hasAuthorship W4308160156A5072202821 @default.
- W4308160156 hasAuthorship W4308160156A5083182498 @default.
- W4308160156 hasAuthorship W4308160156A5091759632 @default.
- W4308160156 hasBestOaLocation W43081601561 @default.
- W4308160156 hasConcept C108583219 @default.
- W4308160156 hasConcept C119857082 @default.
- W4308160156 hasConcept C126322002 @default.
- W4308160156 hasConcept C126838900 @default.
- W4308160156 hasConcept C142724271 @default.
- W4308160156 hasConcept C154945302 @default.
- W4308160156 hasConcept C2776256026 @default.
- W4308160156 hasConcept C2777914695 @default.
- W4308160156 hasConcept C2781069245 @default.
- W4308160156 hasConcept C41008148 @default.
- W4308160156 hasConcept C71924100 @default.
- W4308160156 hasConcept C81363708 @default.
- W4308160156 hasConceptScore W4308160156C108583219 @default.
- W4308160156 hasConceptScore W4308160156C119857082 @default.
- W4308160156 hasConceptScore W4308160156C126322002 @default.
- W4308160156 hasConceptScore W4308160156C126838900 @default.
- W4308160156 hasConceptScore W4308160156C142724271 @default.
- W4308160156 hasConceptScore W4308160156C154945302 @default.
- W4308160156 hasConceptScore W4308160156C2776256026 @default.
- W4308160156 hasConceptScore W4308160156C2777914695 @default.
- W4308160156 hasConceptScore W4308160156C2781069245 @default.
- W4308160156 hasConceptScore W4308160156C41008148 @default.
- W4308160156 hasConceptScore W4308160156C71924100 @default.
- W4308160156 hasConceptScore W4308160156C81363708 @default.
- W4308160156 hasFunder F4320311714 @default.
- W4308160156 hasFunder F4320319993 @default.
- W4308160156 hasFunder F4320334627 @default.
- W4308160156 hasLocation W43081601561 @default.
- W4308160156 hasLocation W43081601562 @default.
- W4308160156 hasOpenAccess W4308160156 @default.
- W4308160156 hasPrimaryLocation W43081601561 @default.
- W4308160156 hasRelatedWork W2731899572 @default.
- W4308160156 hasRelatedWork W2999805992 @default.
- W4308160156 hasRelatedWork W3116150086 @default.
- W4308160156 hasRelatedWork W3133861977 @default.