Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308162004> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W4308162004 abstract "Objective geometry quality assessment of point clouds is essential to evaluate the performance of a wide range of point cloud-based solutions, such as denoising, simplification, reconstruction, and watermarking. Existing point cloud quality assessment (PCQA) methods dedicate to assigning absolute quality scores to distorted point clouds. Their performance is strongly reliant on the quality and quantity of subjective ground-truth scores for training, which are challenging to gather and have been shown to be imprecise, biased, and inconsistent. Furthermore, the majority of existing objective geometry quality assessment approaches are carried out by full-reference traditional metrics. So far, point-based no-reference geometry-only quality assessment techniques have not yet been investigated. This paper presents PRL-GQA, the first pairwise learning framework for no-reference geometry-only quality assessment of point clouds, to the best of our knowledge. The proposed PRL-GQA framework employs a siamese deep architecture, which takes as input a pair of point clouds and outputs their rank order. Each siamese architecture branch is a geometry quality assessment network (GQANet), which is designed to extract multi-scale quality-aware geometric features and output a quality index for the input point cloud. Then, based on the predicted quality indexes, a pairwise rank learning module is introduced to rank the relative quality of a pair of degraded point clouds.Extensive experiments demonstrate the effectiveness of the proposed PRL-GQA framework. Furthermore, the results also show that the fine-tuned no-reference GQANet performs competitively when compared to existing full-reference geometry quality assessment metrics." @default.
- W4308162004 created "2022-11-08" @default.
- W4308162004 creator A5002644037 @default.
- W4308162004 creator A5012324763 @default.
- W4308162004 creator A5023214008 @default.
- W4308162004 creator A5047162583 @default.
- W4308162004 creator A5086331195 @default.
- W4308162004 date "2022-11-02" @default.
- W4308162004 modified "2023-10-18" @default.
- W4308162004 title "No-reference Point Cloud Geometry Quality Assessment Based on Pairwise Rank Learning" @default.
- W4308162004 doi "https://doi.org/10.48550/arxiv.2211.01205" @default.
- W4308162004 hasPublicationYear "2022" @default.
- W4308162004 type Work @default.
- W4308162004 citedByCount "0" @default.
- W4308162004 crossrefType "posted-content" @default.
- W4308162004 hasAuthorship W4308162004A5002644037 @default.
- W4308162004 hasAuthorship W4308162004A5012324763 @default.
- W4308162004 hasAuthorship W4308162004A5023214008 @default.
- W4308162004 hasAuthorship W4308162004A5047162583 @default.
- W4308162004 hasAuthorship W4308162004A5086331195 @default.
- W4308162004 hasBestOaLocation W43081620041 @default.
- W4308162004 hasConcept C111472728 @default.
- W4308162004 hasConcept C111919701 @default.
- W4308162004 hasConcept C11413529 @default.
- W4308162004 hasConcept C114614502 @default.
- W4308162004 hasConcept C119857082 @default.
- W4308162004 hasConcept C124101348 @default.
- W4308162004 hasConcept C127413603 @default.
- W4308162004 hasConcept C131979681 @default.
- W4308162004 hasConcept C138885662 @default.
- W4308162004 hasConcept C154945302 @default.
- W4308162004 hasConcept C164226766 @default.
- W4308162004 hasConcept C184898388 @default.
- W4308162004 hasConcept C200601418 @default.
- W4308162004 hasConcept C2524010 @default.
- W4308162004 hasConcept C2779530757 @default.
- W4308162004 hasConcept C28719098 @default.
- W4308162004 hasConcept C3018395757 @default.
- W4308162004 hasConcept C3020001037 @default.
- W4308162004 hasConcept C33923547 @default.
- W4308162004 hasConcept C41008148 @default.
- W4308162004 hasConcept C79974875 @default.
- W4308162004 hasConceptScore W4308162004C111472728 @default.
- W4308162004 hasConceptScore W4308162004C111919701 @default.
- W4308162004 hasConceptScore W4308162004C11413529 @default.
- W4308162004 hasConceptScore W4308162004C114614502 @default.
- W4308162004 hasConceptScore W4308162004C119857082 @default.
- W4308162004 hasConceptScore W4308162004C124101348 @default.
- W4308162004 hasConceptScore W4308162004C127413603 @default.
- W4308162004 hasConceptScore W4308162004C131979681 @default.
- W4308162004 hasConceptScore W4308162004C138885662 @default.
- W4308162004 hasConceptScore W4308162004C154945302 @default.
- W4308162004 hasConceptScore W4308162004C164226766 @default.
- W4308162004 hasConceptScore W4308162004C184898388 @default.
- W4308162004 hasConceptScore W4308162004C200601418 @default.
- W4308162004 hasConceptScore W4308162004C2524010 @default.
- W4308162004 hasConceptScore W4308162004C2779530757 @default.
- W4308162004 hasConceptScore W4308162004C28719098 @default.
- W4308162004 hasConceptScore W4308162004C3018395757 @default.
- W4308162004 hasConceptScore W4308162004C3020001037 @default.
- W4308162004 hasConceptScore W4308162004C33923547 @default.
- W4308162004 hasConceptScore W4308162004C41008148 @default.
- W4308162004 hasConceptScore W4308162004C79974875 @default.
- W4308162004 hasLocation W43081620041 @default.
- W4308162004 hasLocation W43081620042 @default.
- W4308162004 hasOpenAccess W4308162004 @default.
- W4308162004 hasPrimaryLocation W43081620041 @default.
- W4308162004 hasRelatedWork W2095754749 @default.
- W4308162004 hasRelatedWork W2116911522 @default.
- W4308162004 hasRelatedWork W2279862644 @default.
- W4308162004 hasRelatedWork W2318636398 @default.
- W4308162004 hasRelatedWork W2383532021 @default.
- W4308162004 hasRelatedWork W2805269828 @default.
- W4308162004 hasRelatedWork W2961085424 @default.
- W4308162004 hasRelatedWork W3124633807 @default.
- W4308162004 hasRelatedWork W3206461808 @default.
- W4308162004 hasRelatedWork W4225307033 @default.
- W4308162004 isParatext "false" @default.
- W4308162004 isRetracted "false" @default.
- W4308162004 workType "article" @default.