Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308173656> ?p ?o ?g. }
- W4308173656 endingPage "5355" @default.
- W4308173656 startingPage "5355" @default.
- W4308173656 abstract "Precipitation monitoring is important for earth system modeling and environmental management. Low spatial representativeness limits gauge measurements of rainfall and low spatial resolution limits satellite-derived rainfall. SM2RAIN-based products, which exploit the inversion of the water balance equation to derive rainfall from soil moisture (SM) observations, can be an alternative. However, the quality of SM data limits the accuracy of rainfall. The goal of this work was to improve the accuracy of rainfall estimation through merging multiple soil moisture (SM) datasets. This study proposed an integration framework, which consists of multiple machine learning methods, to use satellite and ground-based soil moisture observations to derive a precipitation product. First, three machine learning (ML) methods (random forest (RF), long short-term memory (LSTM), and convolutional neural network (CNN)) were used, respectively to generate three SM datasets (RF-SM, LSTM-SM, and CNN-SM) by merging satellite (SMOS, SMAP, and ASCAT) and ground-based SM observations. Then, these SM datasets were merged using the Bayesian model averaging method and validated by wireless sensor network (WSN) observations. Finally, the merged SM data were used to produce a rainfall dataset (SM2R) using SM2RAIN. The SM2R dataset was validated using automatic meteorological station (AMS) rainfall observations recorded throughout the Upper Heihe River Basin (China) during 2014–2015 and compared with other rainfall datasets. Our results revealed that the quality of the SM2R data outperforms that of GPM-SM2RAIN, Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS), ERA5-Land (ERA5) and multi-source weighted-ensemble Precipitation (MSWEP). Triple-collocation analysis revealed that SM2R outperformed China Meteorological Data and the China Meteorological Forcing Dataset. Ultimately, the SM2R rainfall product was considered successful with acceptably low spatiotemporal errors (RMSE = 3.5 mm, R = 0.59, and bias = −1.6 mm)." @default.
- W4308173656 created "2022-11-08" @default.
- W4308173656 creator A5026494699 @default.
- W4308173656 creator A5042973046 @default.
- W4308173656 creator A5044194134 @default.
- W4308173656 date "2022-10-26" @default.
- W4308173656 modified "2023-09-29" @default.
- W4308173656 title "Integration of Satellite-Derived and Ground-Based Soil Moisture Observations for a Precipitation Product over the Upper Heihe River Basin, China" @default.
- W4308173656 cites W1672537596 @default.
- W4308173656 cites W1969645208 @default.
- W4308173656 cites W1969801270 @default.
- W4308173656 cites W1979891760 @default.
- W4308173656 cites W1995622703 @default.
- W4308173656 cites W2023194175 @default.
- W4308173656 cites W2039348932 @default.
- W4308173656 cites W2064188779 @default.
- W4308173656 cites W2064675550 @default.
- W4308173656 cites W2084789048 @default.
- W4308173656 cites W2121745948 @default.
- W4308173656 cites W2132549823 @default.
- W4308173656 cites W2138763184 @default.
- W4308173656 cites W2152012447 @default.
- W4308173656 cites W2168624774 @default.
- W4308173656 cites W2261645655 @default.
- W4308173656 cites W2288664036 @default.
- W4308173656 cites W2330268867 @default.
- W4308173656 cites W2397311736 @default.
- W4308173656 cites W2596675441 @default.
- W4308173656 cites W2606762649 @default.
- W4308173656 cites W2742102593 @default.
- W4308173656 cites W2746963570 @default.
- W4308173656 cites W2756918146 @default.
- W4308173656 cites W2760413789 @default.
- W4308173656 cites W2762180336 @default.
- W4308173656 cites W2769472997 @default.
- W4308173656 cites W2793714880 @default.
- W4308173656 cites W2804273873 @default.
- W4308173656 cites W2911964244 @default.
- W4308173656 cites W2922220175 @default.
- W4308173656 cites W2940542567 @default.
- W4308173656 cites W2940726923 @default.
- W4308173656 cites W2971556530 @default.
- W4308173656 cites W2981730281 @default.
- W4308173656 cites W3002343708 @default.
- W4308173656 cites W3004086621 @default.
- W4308173656 cites W3032265670 @default.
- W4308173656 cites W3035067498 @default.
- W4308173656 cites W3036746477 @default.
- W4308173656 cites W3045135671 @default.
- W4308173656 cites W3090202509 @default.
- W4308173656 cites W3090828865 @default.
- W4308173656 cites W3095719400 @default.
- W4308173656 cites W3096283719 @default.
- W4308173656 cites W3108047214 @default.
- W4308173656 cites W3108638155 @default.
- W4308173656 cites W3110726616 @default.
- W4308173656 cites W3112528966 @default.
- W4308173656 cites W3113798012 @default.
- W4308173656 cites W3118862382 @default.
- W4308173656 cites W3121121992 @default.
- W4308173656 cites W3121747126 @default.
- W4308173656 cites W3122638356 @default.
- W4308173656 cites W3130643928 @default.
- W4308173656 cites W3133702861 @default.
- W4308173656 cites W3135428116 @default.
- W4308173656 cites W3138739389 @default.
- W4308173656 cites W3147996381 @default.
- W4308173656 cites W3164731703 @default.
- W4308173656 cites W3164924326 @default.
- W4308173656 cites W3170605318 @default.
- W4308173656 cites W3180255423 @default.
- W4308173656 cites W3182955787 @default.
- W4308173656 cites W3183128335 @default.
- W4308173656 cites W3189793971 @default.
- W4308173656 cites W3197254715 @default.
- W4308173656 cites W3202525453 @default.
- W4308173656 cites W3205663347 @default.
- W4308173656 doi "https://doi.org/10.3390/rs14215355" @default.
- W4308173656 hasPublicationYear "2022" @default.
- W4308173656 type Work @default.
- W4308173656 citedByCount "3" @default.
- W4308173656 countsByYear W43081736562022 @default.
- W4308173656 countsByYear W43081736562023 @default.
- W4308173656 crossrefType "journal-article" @default.
- W4308173656 hasAuthorship W4308173656A5026494699 @default.
- W4308173656 hasAuthorship W4308173656A5042973046 @default.
- W4308173656 hasAuthorship W4308173656A5044194134 @default.
- W4308173656 hasBestOaLocation W43081736561 @default.
- W4308173656 hasConcept C107054158 @default.
- W4308173656 hasConcept C121332964 @default.
- W4308173656 hasConcept C127313418 @default.
- W4308173656 hasConcept C127413603 @default.
- W4308173656 hasConcept C146978453 @default.
- W4308173656 hasConcept C153294291 @default.
- W4308173656 hasConcept C187320778 @default.
- W4308173656 hasConcept C19269812 @default.
- W4308173656 hasConcept C24939127 @default.
- W4308173656 hasConcept C2776212561 @default.