Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308174356> ?p ?o ?g. }
- W4308174356 abstract "Abstract Immune checkpoint inhibitors, especially PD-1/PD-L1 blockade, have revolutionized cancer treatment and brought tremendous benefits to patients who otherwise would have had a limited prognosis. Nonetheless, only a small fraction of patients responds to immunotherapy, and the costs and side effects of immune checkpoint inhibitors cannot be ignored. With the advent of machine and deep learning, clinical and genetic data has been used to stratify patient responses to immunotherapy. Unfortunately, these approaches have typically been “black-box” methods that are unable to explain their predictions, thereby hindering their clinical and responsible application. Herein, we developed a “white-box” Bayesian network model that achieves accurate and interpretable predictions of immunotherapy responses against non-small cell lung cancer (NSCLC). This Tree-Augmented naïve Bayes model (TAN) precisely predicted durable clinical benefits and distinguished two clinically significant subgroups with distinct prognoses. Furthermore, Our state-of-the-art white-box TAN approach achieved greater accuracy than previous methods. We hope our model will guide clinicians in selecting NSCLC patients who truly require immunotherapy and expect our approach will be easily applied to other types of cancer. Structured Abstract Background Immune checkpoint inhibitors have revolutionized cancer treatment. Given that only a small fraction of patients responds to immunotherapy, patient stratification is a pressing concern. Unfortunately, the “black-box” nature of most of the proposed stratification methods, and their far from satisfactory accuracy, has hindered their clinical application. Method We developed a “white-box” Bayesian network model, with interpretable architecture, that can accurately predict immunotherapy response against non-small cell lung cancer (NSCLC). We collected clinical and genetic information from several independent studies, and integrated this via the Tree-Augmented naïve Bayes (TAN) approach. Findings This TAN model precisely predicted durable clinical benefit and distinguished two clinically significant subgroups with distinct prognoses, achieving state-of-the-art performance than previous methods. We also verified that TAN succeeded in detecting meaningful interactions between variables from data-driven approach. Moreover, even when data have missing values, TAN successfully predicted their prognosis. Interpretation Our model will guide clinicians in selecting NSCLC patients who genuinely require immunotherapy. We expect this approach to be easily applied to other types of cancer. To accelerate the uptake of personalized medicine via access to accurate and interpretable models, we provide a web application ( https://pred-nsclc-ici-bayesian.shinyapps.io/Bayesian-NSCLC/ ) for use by the researchers and clinicians community. Funding KAKENHI grant from the Japan Society for the Promotion of Science (JSPS) to H.S (21K17856)." @default.
- W4308174356 created "2022-11-08" @default.
- W4308174356 creator A5024928624 @default.
- W4308174356 creator A5050202886 @default.
- W4308174356 date "2022-11-04" @default.
- W4308174356 modified "2023-10-17" @default.
- W4308174356 title "Bayesian network enables interpretable and state-of-the-art prediction of immunotherapy responses in cancer patients" @default.
- W4308174356 cites W1817561967 @default.
- W4308174356 cites W2017715710 @default.
- W4308174356 cites W2019607817 @default.
- W4308174356 cites W2033465348 @default.
- W4308174356 cites W2056734074 @default.
- W4308174356 cites W2083780116 @default.
- W4308174356 cites W2105309532 @default.
- W4308174356 cites W2144731007 @default.
- W4308174356 cites W2149441684 @default.
- W4308174356 cites W2339631364 @default.
- W4308174356 cites W2510258558 @default.
- W4308174356 cites W2528491735 @default.
- W4308174356 cites W2534193912 @default.
- W4308174356 cites W2613462973 @default.
- W4308174356 cites W2751454205 @default.
- W4308174356 cites W2762777471 @default.
- W4308174356 cites W2783897381 @default.
- W4308174356 cites W2784283849 @default.
- W4308174356 cites W2797855256 @default.
- W4308174356 cites W2799451098 @default.
- W4308174356 cites W2804812017 @default.
- W4308174356 cites W2884259031 @default.
- W4308174356 cites W2891760302 @default.
- W4308174356 cites W2909800464 @default.
- W4308174356 cites W2912285735 @default.
- W4308174356 cites W2945590213 @default.
- W4308174356 cites W2964471257 @default.
- W4308174356 cites W2979026278 @default.
- W4308174356 cites W3007064031 @default.
- W4308174356 cites W3010027350 @default.
- W4308174356 cites W3021568133 @default.
- W4308174356 cites W3039484069 @default.
- W4308174356 cites W3095726304 @default.
- W4308174356 cites W3106818633 @default.
- W4308174356 cites W3109650690 @default.
- W4308174356 cites W3110954991 @default.
- W4308174356 cites W3154974210 @default.
- W4308174356 cites W3174278992 @default.
- W4308174356 cites W3192028440 @default.
- W4308174356 cites W3192493086 @default.
- W4308174356 cites W3192924832 @default.
- W4308174356 cites W3198654417 @default.
- W4308174356 cites W3205880571 @default.
- W4308174356 cites W4206971426 @default.
- W4308174356 cites W4223553787 @default.
- W4308174356 cites W4229459587 @default.
- W4308174356 cites W4254077482 @default.
- W4308174356 cites W2888779318 @default.
- W4308174356 doi "https://doi.org/10.1101/2022.11.02.22281835" @default.
- W4308174356 hasPublicationYear "2022" @default.
- W4308174356 type Work @default.
- W4308174356 citedByCount "0" @default.
- W4308174356 crossrefType "posted-content" @default.
- W4308174356 hasAuthorship W4308174356A5024928624 @default.
- W4308174356 hasAuthorship W4308174356A5050202886 @default.
- W4308174356 hasBestOaLocation W43081743561 @default.
- W4308174356 hasConcept C107673813 @default.
- W4308174356 hasConcept C119857082 @default.
- W4308174356 hasConcept C121608353 @default.
- W4308174356 hasConcept C126322002 @default.
- W4308174356 hasConcept C143998085 @default.
- W4308174356 hasConcept C154945302 @default.
- W4308174356 hasConcept C2777701055 @default.
- W4308174356 hasConcept C2780674031 @default.
- W4308174356 hasConcept C2780851360 @default.
- W4308174356 hasConcept C33724603 @default.
- W4308174356 hasConcept C41008148 @default.
- W4308174356 hasConcept C71924100 @default.
- W4308174356 hasConceptScore W4308174356C107673813 @default.
- W4308174356 hasConceptScore W4308174356C119857082 @default.
- W4308174356 hasConceptScore W4308174356C121608353 @default.
- W4308174356 hasConceptScore W4308174356C126322002 @default.
- W4308174356 hasConceptScore W4308174356C143998085 @default.
- W4308174356 hasConceptScore W4308174356C154945302 @default.
- W4308174356 hasConceptScore W4308174356C2777701055 @default.
- W4308174356 hasConceptScore W4308174356C2780674031 @default.
- W4308174356 hasConceptScore W4308174356C2780851360 @default.
- W4308174356 hasConceptScore W4308174356C33724603 @default.
- W4308174356 hasConceptScore W4308174356C41008148 @default.
- W4308174356 hasConceptScore W4308174356C71924100 @default.
- W4308174356 hasLocation W43081743561 @default.
- W4308174356 hasOpenAccess W4308174356 @default.
- W4308174356 hasPrimaryLocation W43081743561 @default.
- W4308174356 hasRelatedWork W2108026478 @default.
- W4308174356 hasRelatedWork W2790692997 @default.
- W4308174356 hasRelatedWork W2897100571 @default.
- W4308174356 hasRelatedWork W2954760810 @default.
- W4308174356 hasRelatedWork W2970048128 @default.
- W4308174356 hasRelatedWork W3105970160 @default.
- W4308174356 hasRelatedWork W3120335032 @default.
- W4308174356 hasRelatedWork W3193396716 @default.
- W4308174356 hasRelatedWork W4206932559 @default.
- W4308174356 hasRelatedWork W4281723870 @default.