Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308183020> ?p ?o ?g. }
- W4308183020 abstract "This study aims to explore the role of cryptocurrencies and the US dollar in predicting oil prices pre and during COVID-19 pandemic. The study uses three neural network models (i.e., Support vector machines, Multilayer Perceptron Neural Networks and Generalized regression neural networks (GRNN)) over the period from January 1, 2018, to July 5, 2021. Our results are threefold. First, our results indicate Bitcoin is the most influential in predicting oil prices during the bear and bull oil market before COVID-19 and during the downtrend during COVID-19. Second, COVID-19 variables became the most influential during the uptrend, especially the number of death cases. Third, our results also suggest that the most accurate model to predict the price of oil under the conditions of uncertainty that prevailed in the world during the bear and bull prices in the wake of COVID-19 is GRNN. Though the best prediction model under normal conditions before COVID-19 during an uptrend is SVM and during a downtrend is GRNN. Our results provide crucial evidence for investors, academics and policymakers, especially during global uncertainties." @default.
- W4308183020 created "2022-11-09" @default.
- W4308183020 creator A5011669648 @default.
- W4308183020 creator A5016452095 @default.
- W4308183020 creator A5046914650 @default.
- W4308183020 date "2022-10-28" @default.
- W4308183020 modified "2023-09-25" @default.
- W4308183020 title "The role of cryptocurrencies in predicting oil prices pre and during COVID-19 pandemic using machine learning" @default.
- W4308183020 cites W1506434339 @default.
- W4308183020 cites W1513181565 @default.
- W4308183020 cites W1988204882 @default.
- W4308183020 cites W1999603337 @default.
- W4308183020 cites W2007020240 @default.
- W4308183020 cites W2012682800 @default.
- W4308183020 cites W2012936212 @default.
- W4308183020 cites W2040870580 @default.
- W4308183020 cites W2067417246 @default.
- W4308183020 cites W2092917742 @default.
- W4308183020 cites W2107787774 @default.
- W4308183020 cites W2128156079 @default.
- W4308183020 cites W2162656107 @default.
- W4308183020 cites W2215977881 @default.
- W4308183020 cites W2287865458 @default.
- W4308183020 cites W2321560580 @default.
- W4308183020 cites W2608669853 @default.
- W4308183020 cites W2740288336 @default.
- W4308183020 cites W2765909833 @default.
- W4308183020 cites W2766377137 @default.
- W4308183020 cites W2791967143 @default.
- W4308183020 cites W2793264542 @default.
- W4308183020 cites W2793906868 @default.
- W4308183020 cites W2799345028 @default.
- W4308183020 cites W2799918576 @default.
- W4308183020 cites W2886832133 @default.
- W4308183020 cites W2901279219 @default.
- W4308183020 cites W2901364189 @default.
- W4308183020 cites W2905582627 @default.
- W4308183020 cites W2921103103 @default.
- W4308183020 cites W2929682054 @default.
- W4308183020 cites W2946519925 @default.
- W4308183020 cites W2981419603 @default.
- W4308183020 cites W3004532103 @default.
- W4308183020 cites W3021062066 @default.
- W4308183020 cites W3036495543 @default.
- W4308183020 cites W3042422472 @default.
- W4308183020 cites W3046946645 @default.
- W4308183020 cites W3048585901 @default.
- W4308183020 cites W3048626913 @default.
- W4308183020 cites W3083935032 @default.
- W4308183020 cites W3092159656 @default.
- W4308183020 cites W3119909670 @default.
- W4308183020 cites W3121414728 @default.
- W4308183020 cites W3122002729 @default.
- W4308183020 cites W3125225612 @default.
- W4308183020 cites W3131178745 @default.
- W4308183020 cites W3154775419 @default.
- W4308183020 cites W3169399312 @default.
- W4308183020 cites W3173768691 @default.
- W4308183020 cites W3175792525 @default.
- W4308183020 cites W3192795502 @default.
- W4308183020 cites W3196998331 @default.
- W4308183020 cites W3210066151 @default.
- W4308183020 cites W3213921542 @default.
- W4308183020 cites W3214151670 @default.
- W4308183020 cites W3215163093 @default.
- W4308183020 cites W3215782175 @default.
- W4308183020 cites W4205756623 @default.
- W4308183020 cites W4207056946 @default.
- W4308183020 cites W4214562182 @default.
- W4308183020 cites W4282023855 @default.
- W4308183020 cites W4282918608 @default.
- W4308183020 cites W4283033817 @default.
- W4308183020 cites W4283389969 @default.
- W4308183020 cites W4293162306 @default.
- W4308183020 doi "https://doi.org/10.1007/s10479-022-05024-4" @default.
- W4308183020 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36320866" @default.
- W4308183020 hasPublicationYear "2022" @default.
- W4308183020 type Work @default.
- W4308183020 citedByCount "1" @default.
- W4308183020 countsByYear W43081830202023 @default.
- W4308183020 crossrefType "journal-article" @default.
- W4308183020 hasAuthorship W4308183020A5011669648 @default.
- W4308183020 hasAuthorship W4308183020A5016452095 @default.
- W4308183020 hasAuthorship W4308183020A5046914650 @default.
- W4308183020 hasBestOaLocation W43081830201 @default.
- W4308183020 hasConcept C10138342 @default.
- W4308183020 hasConcept C106159729 @default.
- W4308183020 hasConcept C109168655 @default.
- W4308183020 hasConcept C116675565 @default.
- W4308183020 hasConcept C119857082 @default.
- W4308183020 hasConcept C12267149 @default.
- W4308183020 hasConcept C142724271 @default.
- W4308183020 hasConcept C149782125 @default.
- W4308183020 hasConcept C154945302 @default.
- W4308183020 hasConcept C159047783 @default.
- W4308183020 hasConcept C162324750 @default.
- W4308183020 hasConcept C179717631 @default.
- W4308183020 hasConcept C180706569 @default.
- W4308183020 hasConcept C2779134260 @default.
- W4308183020 hasConcept C3006700255 @default.