Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308184843> ?p ?o ?g. }
- W4308184843 endingPage "295" @default.
- W4308184843 startingPage "283" @default.
- W4308184843 abstract "We sought to determine whether machine learning and natural language processing (NLP) applied to electronic medical records could improve performance of automated health-care claims-based algorithms to identify anaphylaxis events using data on 516 patients with outpatient, emergency department, or inpatient anaphylaxis diagnosis codes during 2015-2019 in 2 integrated health-care institutions in the Northwest United States. We used one site's manually reviewed gold-standard outcomes data for model development and the other's for external validation based on cross-validated area under the receiver operating characteristic curve (AUC), positive predictive value (PPV), and sensitivity. In the development site 154 (64%) of 239 potential events met adjudication criteria for anaphylaxis compared with 180 (65%) of 277 in the validation site. Logistic regression models using only structured claims data achieved a cross-validated AUC of 0.58 (95% CI: 0.54, 0.63). Machine learning improved cross-validated AUC to 0.62 (0.58, 0.66); incorporating NLP-derived covariates further increased cross-validated AUCs to 0.70 (0.66, 0.75) in development and 0.67 (0.63, 0.71) in external validation data. A classification threshold with cross-validated PPV of 79% and cross-validated sensitivity of 66% in development data had cross-validated PPV of 78% and cross-validated sensitivity of 56% in external data. Machine learning and NLP-derived data improved identification of validated anaphylaxis events." @default.
- W4308184843 created "2022-11-09" @default.
- W4308184843 creator A5009328822 @default.
- W4308184843 creator A5020712297 @default.
- W4308184843 creator A5021380975 @default.
- W4308184843 creator A5023546258 @default.
- W4308184843 creator A5023818336 @default.
- W4308184843 creator A5031778562 @default.
- W4308184843 creator A5032137686 @default.
- W4308184843 creator A5036429950 @default.
- W4308184843 creator A5039253208 @default.
- W4308184843 creator A5040276088 @default.
- W4308184843 creator A5041212198 @default.
- W4308184843 creator A5045855600 @default.
- W4308184843 creator A5048956065 @default.
- W4308184843 creator A5054117089 @default.
- W4308184843 creator A5054315152 @default.
- W4308184843 creator A5060145270 @default.
- W4308184843 creator A5061109493 @default.
- W4308184843 creator A5081229809 @default.
- W4308184843 creator A5083755872 @default.
- W4308184843 date "2022-11-04" @default.
- W4308184843 modified "2023-10-16" @default.
- W4308184843 title "Improving Methods of Identifying Anaphylaxis for Medical Product Safety Surveillance Using Natural Language Processing and Machine Learning" @default.
- W4308184843 cites W1144300234 @default.
- W4308184843 cites W138398095 @default.
- W4308184843 cites W1484976590 @default.
- W4308184843 cites W1594888675 @default.
- W4308184843 cites W1674711689 @default.
- W4308184843 cites W1863753810 @default.
- W4308184843 cites W1885171326 @default.
- W4308184843 cites W1964625659 @default.
- W4308184843 cites W196776705 @default.
- W4308184843 cites W1983745852 @default.
- W4308184843 cites W1992517276 @default.
- W4308184843 cites W2016871293 @default.
- W4308184843 cites W2021075383 @default.
- W4308184843 cites W2030147903 @default.
- W4308184843 cites W2044944166 @default.
- W4308184843 cites W2052951012 @default.
- W4308184843 cites W2066117481 @default.
- W4308184843 cites W2078881122 @default.
- W4308184843 cites W2085577106 @default.
- W4308184843 cites W2097360283 @default.
- W4308184843 cites W2105637130 @default.
- W4308184843 cites W2105945068 @default.
- W4308184843 cites W2107508737 @default.
- W4308184843 cites W2116323965 @default.
- W4308184843 cites W2117812871 @default.
- W4308184843 cites W2124119575 @default.
- W4308184843 cites W2132096417 @default.
- W4308184843 cites W2146089916 @default.
- W4308184843 cites W2159583324 @default.
- W4308184843 cites W2168769804 @default.
- W4308184843 cites W2169818249 @default.
- W4308184843 cites W2342068386 @default.
- W4308184843 cites W2345195116 @default.
- W4308184843 cites W2520392019 @default.
- W4308184843 cites W2606769376 @default.
- W4308184843 cites W2615116167 @default.
- W4308184843 cites W2735580341 @default.
- W4308184843 cites W2753708538 @default.
- W4308184843 cites W2762621503 @default.
- W4308184843 cites W2765693998 @default.
- W4308184843 cites W2889124355 @default.
- W4308184843 cites W2889217150 @default.
- W4308184843 cites W2889242407 @default.
- W4308184843 cites W2889377580 @default.
- W4308184843 cites W2893396084 @default.
- W4308184843 cites W2901040498 @default.
- W4308184843 cites W2902452806 @default.
- W4308184843 cites W2973032093 @default.
- W4308184843 cites W2990471161 @default.
- W4308184843 cites W2991319174 @default.
- W4308184843 cites W2992885821 @default.
- W4308184843 cites W2997514453 @default.
- W4308184843 cites W3016229786 @default.
- W4308184843 cites W3099006712 @default.
- W4308184843 cites W3132568032 @default.
- W4308184843 cites W3157034752 @default.
- W4308184843 cites W3160137267 @default.
- W4308184843 cites W3194280623 @default.
- W4308184843 cites W4292807770 @default.
- W4308184843 cites W4294541781 @default.
- W4308184843 doi "https://doi.org/10.1093/aje/kwac182" @default.
- W4308184843 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36331289" @default.
- W4308184843 hasPublicationYear "2022" @default.
- W4308184843 type Work @default.
- W4308184843 citedByCount "3" @default.
- W4308184843 countsByYear W43081848432023 @default.
- W4308184843 crossrefType "journal-article" @default.
- W4308184843 hasAuthorship W4308184843A5009328822 @default.
- W4308184843 hasAuthorship W4308184843A5020712297 @default.
- W4308184843 hasAuthorship W4308184843A5021380975 @default.
- W4308184843 hasAuthorship W4308184843A5023546258 @default.
- W4308184843 hasAuthorship W4308184843A5023818336 @default.
- W4308184843 hasAuthorship W4308184843A5031778562 @default.
- W4308184843 hasAuthorship W4308184843A5032137686 @default.