Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308191010> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4308191010 endingPage "65" @default.
- W4308191010 startingPage "21" @default.
- W4308191010 abstract "Prediction is the act of forecasting what will happen in the future. The field of prediction is gaining more importance in almost all the fields. Machine learning techniques have been used widely for predictions also in recent time deep learning algorithms gain more importance. In this paper, we will be performing prediction over a dataset using both machine learning and deep learning techniques, and the performance of each method will be identified and compared with each other. We have used the house price dataset, which consists of 80 features, which will help to explore data visualization methods, data splitting, data normalization techniques. We have implemented five regression-based machine learning models including Simple Linear Regression, Random Forest Regression, Ada Boosting Regression, Gradient Boosting Regression, Support Vector Regression were used. Deep learning models, including artificial neural network, multi output regression, regression using Tensorflow-Keras were also used for regression. The study was further extended to compare the performance of the classification models and hence six machine learning models and three deep learning models including logistic regression classifier, decision tree classifier, random forest classifier, Naïve Bayes classifier, k-nearest neighbor classifier, support vector machine classifier, feed forward neural network, recurrent neural network, LSTM recurrent neural networks were used. The models were also fine-tuned and results were also compared using performance metrics. We have split our dataset in to 70:30 ration for training and testing. In regression models random forest algorithms were performing better with MAE score 0.12, MSE score 0.55, RMSE score 0.230 and R2 score of 0.85 and in deep learning Tensorflow-Keras–based regression model was performing well with MAE score 0.12, MSE score 0.54, RMSE score 0.210 and R2-Score of 0.87, while in the other side, the classification model, random forest model, was performing good with accuracy of 89.21%, and in deep learning classification technique, feed forward neural network model, was performing good with accuracy of 89.52%. Other performance metrics including Cohen kappa score, Matthews correlation coefficient, average precision, average recall, and F1 score were also calculated to compare the performance." @default.
- W4308191010 created "2022-11-09" @default.
- W4308191010 creator A5000365955 @default.
- W4308191010 creator A5037520269 @default.
- W4308191010 creator A5043355312 @default.
- W4308191010 creator A5045213607 @default.
- W4308191010 creator A5049504201 @default.
- W4308191010 date "2022-11-04" @default.
- W4308191010 modified "2023-09-26" @default.
- W4308191010 title "Performance Evaluation of Machine Learning and Deep Learning Techniques" @default.
- W4308191010 cites W2591292252 @default.
- W4308191010 cites W2609599702 @default.
- W4308191010 cites W2765449478 @default.
- W4308191010 cites W2769704392 @default.
- W4308191010 cites W2791551166 @default.
- W4308191010 cites W2962179835 @default.
- W4308191010 cites W2991396638 @default.
- W4308191010 cites W2999969809 @default.
- W4308191010 cites W3005705209 @default.
- W4308191010 cites W3011649488 @default.
- W4308191010 cites W3014666486 @default.
- W4308191010 doi "https://doi.org/10.1002/9781119857686.ch2" @default.
- W4308191010 hasPublicationYear "2022" @default.
- W4308191010 type Work @default.
- W4308191010 citedByCount "0" @default.
- W4308191010 crossrefType "other" @default.
- W4308191010 hasAuthorship W4308191010A5000365955 @default.
- W4308191010 hasAuthorship W4308191010A5037520269 @default.
- W4308191010 hasAuthorship W4308191010A5043355312 @default.
- W4308191010 hasAuthorship W4308191010A5045213607 @default.
- W4308191010 hasAuthorship W4308191010A5049504201 @default.
- W4308191010 hasConcept C105795698 @default.
- W4308191010 hasConcept C108583219 @default.
- W4308191010 hasConcept C119857082 @default.
- W4308191010 hasConcept C12267149 @default.
- W4308191010 hasConcept C151956035 @default.
- W4308191010 hasConcept C154945302 @default.
- W4308191010 hasConcept C169258074 @default.
- W4308191010 hasConcept C33923547 @default.
- W4308191010 hasConcept C41008148 @default.
- W4308191010 hasConcept C46686674 @default.
- W4308191010 hasConcept C50644808 @default.
- W4308191010 hasConcept C52001869 @default.
- W4308191010 hasConcept C70153297 @default.
- W4308191010 hasConcept C83546350 @default.
- W4308191010 hasConcept C84525736 @default.
- W4308191010 hasConcept C95623464 @default.
- W4308191010 hasConceptScore W4308191010C105795698 @default.
- W4308191010 hasConceptScore W4308191010C108583219 @default.
- W4308191010 hasConceptScore W4308191010C119857082 @default.
- W4308191010 hasConceptScore W4308191010C12267149 @default.
- W4308191010 hasConceptScore W4308191010C151956035 @default.
- W4308191010 hasConceptScore W4308191010C154945302 @default.
- W4308191010 hasConceptScore W4308191010C169258074 @default.
- W4308191010 hasConceptScore W4308191010C33923547 @default.
- W4308191010 hasConceptScore W4308191010C41008148 @default.
- W4308191010 hasConceptScore W4308191010C46686674 @default.
- W4308191010 hasConceptScore W4308191010C50644808 @default.
- W4308191010 hasConceptScore W4308191010C52001869 @default.
- W4308191010 hasConceptScore W4308191010C70153297 @default.
- W4308191010 hasConceptScore W4308191010C83546350 @default.
- W4308191010 hasConceptScore W4308191010C84525736 @default.
- W4308191010 hasConceptScore W4308191010C95623464 @default.
- W4308191010 hasLocation W43081910101 @default.
- W4308191010 hasOpenAccess W4308191010 @default.
- W4308191010 hasPrimaryLocation W43081910101 @default.
- W4308191010 hasRelatedWork W3204641204 @default.
- W4308191010 hasRelatedWork W3210696866 @default.
- W4308191010 hasRelatedWork W4214951795 @default.
- W4308191010 hasRelatedWork W4281846282 @default.
- W4308191010 hasRelatedWork W4293069612 @default.
- W4308191010 hasRelatedWork W4296081764 @default.
- W4308191010 hasRelatedWork W4313165475 @default.
- W4308191010 hasRelatedWork W4321636153 @default.
- W4308191010 hasRelatedWork W4377964522 @default.
- W4308191010 hasRelatedWork W4385728794 @default.
- W4308191010 isParatext "false" @default.
- W4308191010 isRetracted "false" @default.
- W4308191010 workType "other" @default.