Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308191607> ?p ?o ?g. }
- W4308191607 endingPage "134878" @default.
- W4308191607 startingPage "134878" @default.
- W4308191607 abstract "The widespread heavy metal contamination in soil induced by extensive human disturbance has been a global significant issue because of its chronic toxic effects on human health. However, the establishment of effective monitoring and assessing methods for heavy metal content in the soil remain a long-term challenge due to the intrinsic limitation of the current multi-band remote sensing technology and field measurement methods. Prompted by this significant technique gap, we represent an implementation of remote-sensing inversion models based on hyperspectral imagery to reconstruct soil heavy metal contents within an experimental farmland located in Mianzhu city, Sichuan, China. We collected soil samples at the pre-defined sites, and measured soil heavy metal contents and soil spectrum in the laboratory condition. Meanwhile, we obtained Orbita Hyperspectral Satellites (OHS) imagery and quantified the associated vegetation indexes. The measured soil spectrum, bands of OHS, and the generated vegetation indexes were mathematically transformed to better represent their relations with soil heavy metal contents. Consequently, the most sensitive variables were selected as potent predictors of soil heavy metal contents in the inversion models. After evaluating the optimal inversion models for each heavy metal element, we implemented them to reconstruct the spatial patterns of soil heavy metal contents over the study landscape. We found obvious benefits of the remote sensing inversion model in predicting the spatial heterogeneity of heavy metal content within this small landscape patch. Specifically, the inversion model unraveled a normal distribution of heavy metal contents within the landscape, while the traditional spatial interpolation based on field measurements may suggest a largely skewed distribution. Compared with airborne-based studies, this study represents an application of spaceborne satellite data, which can be easily applied to a large spatial scale and long-term monitoring." @default.
- W4308191607 created "2022-11-09" @default.
- W4308191607 creator A5002098723 @default.
- W4308191607 creator A5010066017 @default.
- W4308191607 creator A5013339942 @default.
- W4308191607 creator A5018939784 @default.
- W4308191607 creator A5031695853 @default.
- W4308191607 creator A5071563821 @default.
- W4308191607 creator A5074418018 @default.
- W4308191607 creator A5081798115 @default.
- W4308191607 creator A5083301457 @default.
- W4308191607 creator A5086645184 @default.
- W4308191607 creator A5087050884 @default.
- W4308191607 date "2022-12-01" @default.
- W4308191607 modified "2023-10-18" @default.
- W4308191607 title "Hyperspectral imagery reveals large spatial variations of heavy metal content in agricultural soil - A case study of remote-sensing inversion based on Orbita Hyperspectral Satellites (OHS) imagery" @default.
- W4308191607 cites W1602279887 @default.
- W4308191607 cites W1778663154 @default.
- W4308191607 cites W1817860100 @default.
- W4308191607 cites W1965619562 @default.
- W4308191607 cites W1999048942 @default.
- W4308191607 cites W2000154727 @default.
- W4308191607 cites W2028527095 @default.
- W4308191607 cites W2029983026 @default.
- W4308191607 cites W2042038556 @default.
- W4308191607 cites W2047328174 @default.
- W4308191607 cites W2080501305 @default.
- W4308191607 cites W2088697979 @default.
- W4308191607 cites W2089155688 @default.
- W4308191607 cites W2097790164 @default.
- W4308191607 cites W2113661395 @default.
- W4308191607 cites W2131060365 @default.
- W4308191607 cites W2148964762 @default.
- W4308191607 cites W2262399977 @default.
- W4308191607 cites W2282736371 @default.
- W4308191607 cites W2322799392 @default.
- W4308191607 cites W2580055173 @default.
- W4308191607 cites W2591129009 @default.
- W4308191607 cites W2773146783 @default.
- W4308191607 cites W2890771834 @default.
- W4308191607 cites W2901828155 @default.
- W4308191607 cites W2903042037 @default.
- W4308191607 cites W2907771707 @default.
- W4308191607 cites W2908941153 @default.
- W4308191607 cites W2948548092 @default.
- W4308191607 cites W2968496090 @default.
- W4308191607 cites W2984531413 @default.
- W4308191607 cites W3007918442 @default.
- W4308191607 cites W3010067501 @default.
- W4308191607 cites W3011531216 @default.
- W4308191607 cites W3034659913 @default.
- W4308191607 cites W3037428236 @default.
- W4308191607 cites W3083712094 @default.
- W4308191607 cites W3087149707 @default.
- W4308191607 cites W3129428730 @default.
- W4308191607 cites W3139008167 @default.
- W4308191607 cites W3145223225 @default.
- W4308191607 cites W3153503777 @default.
- W4308191607 cites W3168017910 @default.
- W4308191607 cites W3205933141 @default.
- W4308191607 cites W3205934148 @default.
- W4308191607 cites W3210033860 @default.
- W4308191607 cites W3216428451 @default.
- W4308191607 cites W3217012577 @default.
- W4308191607 cites W4200583178 @default.
- W4308191607 doi "https://doi.org/10.1016/j.jclepro.2022.134878" @default.
- W4308191607 hasPublicationYear "2022" @default.
- W4308191607 type Work @default.
- W4308191607 citedByCount "5" @default.
- W4308191607 countsByYear W43081916072023 @default.
- W4308191607 crossrefType "journal-article" @default.
- W4308191607 hasAuthorship W4308191607A5002098723 @default.
- W4308191607 hasAuthorship W4308191607A5010066017 @default.
- W4308191607 hasAuthorship W4308191607A5013339942 @default.
- W4308191607 hasAuthorship W4308191607A5018939784 @default.
- W4308191607 hasAuthorship W4308191607A5031695853 @default.
- W4308191607 hasAuthorship W4308191607A5071563821 @default.
- W4308191607 hasAuthorship W4308191607A5074418018 @default.
- W4308191607 hasAuthorship W4308191607A5081798115 @default.
- W4308191607 hasAuthorship W4308191607A5083301457 @default.
- W4308191607 hasAuthorship W4308191607A5086645184 @default.
- W4308191607 hasAuthorship W4308191607A5087050884 @default.
- W4308191607 hasConcept C109007969 @default.
- W4308191607 hasConcept C127313418 @default.
- W4308191607 hasConcept C151730666 @default.
- W4308191607 hasConcept C159078339 @default.
- W4308191607 hasConcept C159390177 @default.
- W4308191607 hasConcept C1893757 @default.
- W4308191607 hasConcept C2777016058 @default.
- W4308191607 hasConcept C39432304 @default.
- W4308191607 hasConcept C62649853 @default.
- W4308191607 hasConceptScore W4308191607C109007969 @default.
- W4308191607 hasConceptScore W4308191607C127313418 @default.
- W4308191607 hasConceptScore W4308191607C151730666 @default.
- W4308191607 hasConceptScore W4308191607C159078339 @default.
- W4308191607 hasConceptScore W4308191607C159390177 @default.
- W4308191607 hasConceptScore W4308191607C1893757 @default.
- W4308191607 hasConceptScore W4308191607C2777016058 @default.