Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308191765> ?p ?o ?g. }
- W4308191765 endingPage "035109" @default.
- W4308191765 startingPage "035109" @default.
- W4308191765 abstract "Abstract Implementing condition monitoring and fault diagnosis of aero-engine bearings is crucial to ensure that aircraft operate safely and reliably. In engineering practice, the fault data for aero-engine bearings are extremely limited. However, the traditional fault diagnosis methods have two shortcomings under extremely small sample conditions: (1) they have limited diagnostic performance and generalization ability, and (2) they do not mine fault information sufficiently or efficiently. This article proposes a Siamese multiscale residual feature fusion network (SMSRFFN) for aero-engine bearing fault diagnosis under small-sample conditions to overcome the weaknesses above. In the proposed SMSRFFN, the training samples are first paired according to the matching rules to realize the expansion of the sample size. Second, a multiscale residual feature extraction network (MSRFEN) is constructed to excavate the fault features of different scales and speed up the convergence speed of the network. Then, a multiscale attention mechanism feature fusion module (MSAMFFM) is designed to achieve efficient fusion of fault features at different scales. Finally, the distance of the input sample is measured based on the fused deep feature representation to identify the fault state of the aero-engine bearing. The proposed SMSRFFN is evaluated using three bearing fault data and also compared with some state-of-the-art small-sample diagnostic methods. The experimental results demonstrate the effectiveness and superiority of the proposed SMSRFFN in mining fault information and improving diagnosis accuracy under extremely small sample conditions." @default.
- W4308191765 created "2022-11-09" @default.
- W4308191765 creator A5002158301 @default.
- W4308191765 creator A5005679526 @default.
- W4308191765 creator A5070077744 @default.
- W4308191765 creator A5076917818 @default.
- W4308191765 creator A5081728299 @default.
- W4308191765 date "2022-12-07" @default.
- W4308191765 modified "2023-10-12" @default.
- W4308191765 title "Siamese multiscale residual feature fusion network for aero-engine bearing fault diagnosis under small-sample condition" @default.
- W4308191765 cites W2753332519 @default.
- W4308191765 cites W2768753204 @default.
- W4308191765 cites W2803978172 @default.
- W4308191765 cites W2899318073 @default.
- W4308191765 cites W2947583263 @default.
- W4308191765 cites W2966008650 @default.
- W4308191765 cites W2967115638 @default.
- W4308191765 cites W2981704932 @default.
- W4308191765 cites W2984201918 @default.
- W4308191765 cites W2989818023 @default.
- W4308191765 cites W3004574399 @default.
- W4308191765 cites W3016195914 @default.
- W4308191765 cites W3025926773 @default.
- W4308191765 cites W3026006566 @default.
- W4308191765 cites W3042373362 @default.
- W4308191765 cites W3043970225 @default.
- W4308191765 cites W3088502892 @default.
- W4308191765 cites W3092600489 @default.
- W4308191765 cites W3109343305 @default.
- W4308191765 cites W3115356548 @default.
- W4308191765 cites W3125266251 @default.
- W4308191765 cites W3132422289 @default.
- W4308191765 cites W3134397144 @default.
- W4308191765 cites W3135784786 @default.
- W4308191765 cites W3146366485 @default.
- W4308191765 cites W3150282857 @default.
- W4308191765 cites W3152566238 @default.
- W4308191765 cites W3170305376 @default.
- W4308191765 cites W3176809148 @default.
- W4308191765 cites W3203494009 @default.
- W4308191765 cites W3209564648 @default.
- W4308191765 cites W3213315512 @default.
- W4308191765 cites W3216618051 @default.
- W4308191765 cites W4200221661 @default.
- W4308191765 cites W4200591402 @default.
- W4308191765 cites W4205623677 @default.
- W4308191765 cites W4211058054 @default.
- W4308191765 cites W4213189586 @default.
- W4308191765 cites W4286383144 @default.
- W4308191765 cites W4286615625 @default.
- W4308191765 cites W4296902456 @default.
- W4308191765 doi "https://doi.org/10.1088/1361-6501/aca044" @default.
- W4308191765 hasPublicationYear "2022" @default.
- W4308191765 type Work @default.
- W4308191765 citedByCount "3" @default.
- W4308191765 countsByYear W43081917652023 @default.
- W4308191765 crossrefType "journal-article" @default.
- W4308191765 hasAuthorship W4308191765A5002158301 @default.
- W4308191765 hasAuthorship W4308191765A5005679526 @default.
- W4308191765 hasAuthorship W4308191765A5070077744 @default.
- W4308191765 hasAuthorship W4308191765A5076917818 @default.
- W4308191765 hasAuthorship W4308191765A5081728299 @default.
- W4308191765 hasConcept C11413529 @default.
- W4308191765 hasConcept C124101348 @default.
- W4308191765 hasConcept C127313418 @default.
- W4308191765 hasConcept C138885662 @default.
- W4308191765 hasConcept C153180895 @default.
- W4308191765 hasConcept C154945302 @default.
- W4308191765 hasConcept C155512373 @default.
- W4308191765 hasConcept C165205528 @default.
- W4308191765 hasConcept C175551986 @default.
- W4308191765 hasConcept C185592680 @default.
- W4308191765 hasConcept C198531522 @default.
- W4308191765 hasConcept C199978012 @default.
- W4308191765 hasConcept C2776401178 @default.
- W4308191765 hasConcept C41008148 @default.
- W4308191765 hasConcept C41895202 @default.
- W4308191765 hasConcept C43617362 @default.
- W4308191765 hasConcept C50644808 @default.
- W4308191765 hasConcept C52622490 @default.
- W4308191765 hasConceptScore W4308191765C11413529 @default.
- W4308191765 hasConceptScore W4308191765C124101348 @default.
- W4308191765 hasConceptScore W4308191765C127313418 @default.
- W4308191765 hasConceptScore W4308191765C138885662 @default.
- W4308191765 hasConceptScore W4308191765C153180895 @default.
- W4308191765 hasConceptScore W4308191765C154945302 @default.
- W4308191765 hasConceptScore W4308191765C155512373 @default.
- W4308191765 hasConceptScore W4308191765C165205528 @default.
- W4308191765 hasConceptScore W4308191765C175551986 @default.
- W4308191765 hasConceptScore W4308191765C185592680 @default.
- W4308191765 hasConceptScore W4308191765C198531522 @default.
- W4308191765 hasConceptScore W4308191765C199978012 @default.
- W4308191765 hasConceptScore W4308191765C2776401178 @default.
- W4308191765 hasConceptScore W4308191765C41008148 @default.
- W4308191765 hasConceptScore W4308191765C41895202 @default.
- W4308191765 hasConceptScore W4308191765C43617362 @default.
- W4308191765 hasConceptScore W4308191765C50644808 @default.
- W4308191765 hasConceptScore W4308191765C52622490 @default.