Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308192703> ?p ?o ?g. }
- W4308192703 endingPage "28" @default.
- W4308192703 startingPage "1" @default.
- W4308192703 abstract "In this work, we proposed a new method called Laplace–Padé–Caputo fractional reduced differential transform method (LPCFRDTM) for solving a two-dimensional nonlinear time-fractional damped wave equation subject to the appropriate initial conditions arising in various physical models. LPCFRDTM is the amalgamation of the Laplace transform method (LTM), Padé approximant, and the well-known reduced differential transform method (RDTM) in the Caputo fractional derivative senses. First, the solution to the problem is gained in the convergent power series form with the help of the Caputo fractional-reduced differential transform method. Then, the Laplace–Padé approximant is applied to enlarge the domain of convergence. The advantage of this method is that it solves equations simply and directly without requiring enormous amounts of computational work, perturbations, or linearization, and it expands the convergence domain, leading to the exact answer. To confirm the effectiveness, accuracy, and convergence of the proposed method, four test-modeling problems from mathematical physics nonlinear wave equations are considered. The findings and results showed that the proposed approach may be utilized to solve comparable wave equations with nonlinear damping and source components and to forecast and enrich the internal mechanism of nonlinearity in nonlinear dynamic events." @default.
- W4308192703 created "2022-11-09" @default.
- W4308192703 creator A5011976772 @default.
- W4308192703 creator A5016169623 @default.
- W4308192703 creator A5055644738 @default.
- W4308192703 date "2022-11-04" @default.
- W4308192703 modified "2023-09-25" @default.
- W4308192703 title "Approximate Analytical Solution of Two-Dimensional Nonlinear Time-Fractional Damped Wave Equation in the Caputo Fractional Derivative Operator" @default.
- W4308192703 cites W1895323414 @default.
- W4308192703 cites W1998644875 @default.
- W4308192703 cites W2000776317 @default.
- W4308192703 cites W2050055254 @default.
- W4308192703 cites W2142457001 @default.
- W4308192703 cites W2586393653 @default.
- W4308192703 cites W2763329502 @default.
- W4308192703 cites W2766008418 @default.
- W4308192703 cites W2777150187 @default.
- W4308192703 cites W2795839441 @default.
- W4308192703 cites W2801120196 @default.
- W4308192703 cites W2801485361 @default.
- W4308192703 cites W2802403841 @default.
- W4308192703 cites W2904627137 @default.
- W4308192703 cites W2906529768 @default.
- W4308192703 cites W2917358222 @default.
- W4308192703 cites W2920338503 @default.
- W4308192703 cites W2921241680 @default.
- W4308192703 cites W2938793966 @default.
- W4308192703 cites W2943804574 @default.
- W4308192703 cites W2964166993 @default.
- W4308192703 cites W2990873124 @default.
- W4308192703 cites W3000633284 @default.
- W4308192703 cites W3001431268 @default.
- W4308192703 cites W3016295887 @default.
- W4308192703 cites W3044092562 @default.
- W4308192703 cites W3044135167 @default.
- W4308192703 cites W3103558840 @default.
- W4308192703 cites W3110904444 @default.
- W4308192703 cites W3112721556 @default.
- W4308192703 cites W3133777536 @default.
- W4308192703 cites W3158955547 @default.
- W4308192703 cites W3164699562 @default.
- W4308192703 cites W3164875500 @default.
- W4308192703 cites W3193949860 @default.
- W4308192703 cites W3198982797 @default.
- W4308192703 cites W3202756863 @default.
- W4308192703 cites W3210853327 @default.
- W4308192703 cites W4205637863 @default.
- W4308192703 cites W4205652847 @default.
- W4308192703 cites W4205675552 @default.
- W4308192703 cites W4205719638 @default.
- W4308192703 cites W4213365581 @default.
- W4308192703 cites W4221073242 @default.
- W4308192703 cites W4224292209 @default.
- W4308192703 cites W4225822727 @default.
- W4308192703 cites W4286208390 @default.
- W4308192703 cites W4286383557 @default.
- W4308192703 doi "https://doi.org/10.1155/2022/7004412" @default.
- W4308192703 hasPublicationYear "2022" @default.
- W4308192703 type Work @default.
- W4308192703 citedByCount "0" @default.
- W4308192703 crossrefType "journal-article" @default.
- W4308192703 hasAuthorship W4308192703A5011976772 @default.
- W4308192703 hasAuthorship W4308192703A5016169623 @default.
- W4308192703 hasAuthorship W4308192703A5055644738 @default.
- W4308192703 hasBestOaLocation W43081927031 @default.
- W4308192703 hasConcept C102519508 @default.
- W4308192703 hasConcept C10288518 @default.
- W4308192703 hasConcept C103824480 @default.
- W4308192703 hasConcept C104317684 @default.
- W4308192703 hasConcept C1115519 @default.
- W4308192703 hasConcept C11210021 @default.
- W4308192703 hasConcept C121332964 @default.
- W4308192703 hasConcept C134306372 @default.
- W4308192703 hasConcept C154249771 @default.
- W4308192703 hasConcept C158448853 @default.
- W4308192703 hasConcept C158622935 @default.
- W4308192703 hasConcept C162324750 @default.
- W4308192703 hasConcept C17020691 @default.
- W4308192703 hasConcept C185592680 @default.
- W4308192703 hasConcept C194330524 @default.
- W4308192703 hasConcept C203024314 @default.
- W4308192703 hasConcept C2777303404 @default.
- W4308192703 hasConcept C28826006 @default.
- W4308192703 hasConcept C31972630 @default.
- W4308192703 hasConcept C33923547 @default.
- W4308192703 hasConcept C36503486 @default.
- W4308192703 hasConcept C41008148 @default.
- W4308192703 hasConcept C50522688 @default.
- W4308192703 hasConcept C55493867 @default.
- W4308192703 hasConcept C62520636 @default.
- W4308192703 hasConcept C73905626 @default.
- W4308192703 hasConcept C76563020 @default.
- W4308192703 hasConcept C86339819 @default.
- W4308192703 hasConcept C93779851 @default.
- W4308192703 hasConcept C97937538 @default.
- W4308192703 hasConceptScore W4308192703C102519508 @default.
- W4308192703 hasConceptScore W4308192703C10288518 @default.
- W4308192703 hasConceptScore W4308192703C103824480 @default.