Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308194484> ?p ?o ?g. }
- W4308194484 endingPage "e0277081" @default.
- W4308194484 startingPage "e0277081" @default.
- W4308194484 abstract "The COVID-19 pandemic has exposed the vulnerability of healthcare services worldwide, raising the need to develop novel tools to provide rapid and cost-effective screening and diagnosis. Clinical reports indicated that COVID-19 infection may cause cardiac injury, and electrocardiograms (ECG) may serve as a diagnostic biomarker for COVID-19. This study aims to utilize ECG signals to detect COVID-19 automatically. We propose a novel method to extract ECG signals from ECG paper records, which are then fed into one-dimensional convolution neural network (1D-CNN) to learn and diagnose the disease. To evaluate the quality of digitized signals, R peaks in the paper-based ECG images are labeled. Afterward, RR intervals calculated from each image are compared to RR intervals of the corresponding digitized signal. Experiments on the COVID-19 ECG images dataset demonstrate that the proposed digitization method is able to capture correctly the original signals, with a mean absolute error of 28.11 ms. The 1D-CNN model (SEResNet18), which is trained on the digitized ECG signals, allows to identify between individuals with COVID-19 and other subjects accurately, with classification accuracies of 98.42% and 98.50% for classifying COVID-19 vs. Normal and COVID-19 vs. other classes, respectively. Furthermore, the proposed method also achieves a high-level of performance for the multi-classification task. Our findings indicate that a deep learning system trained on digitized ECG signals can serve as a potential tool for diagnosing COVID-19." @default.
- W4308194484 created "2022-11-09" @default.
- W4308194484 creator A5035980027 @default.
- W4308194484 creator A5040607253 @default.
- W4308194484 creator A5042664192 @default.
- W4308194484 creator A5065112274 @default.
- W4308194484 creator A5066895530 @default.
- W4308194484 creator A5073978185 @default.
- W4308194484 date "2022-11-04" @default.
- W4308194484 modified "2023-09-27" @default.
- W4308194484 title "Detecting COVID-19 from digitized ECG printouts using 1D convolutional neural networks" @default.
- W4308194484 cites W2551393996 @default.
- W4308194484 cites W2752782242 @default.
- W4308194484 cites W2754051771 @default.
- W4308194484 cites W2904388869 @default.
- W4308194484 cites W2962858109 @default.
- W4308194484 cites W2967141048 @default.
- W4308194484 cites W2998192574 @default.
- W4308194484 cites W3001195213 @default.
- W4308194484 cites W3004906315 @default.
- W4308194484 cites W3006856666 @default.
- W4308194484 cites W3006882119 @default.
- W4308194484 cites W3007497549 @default.
- W4308194484 cites W3009928515 @default.
- W4308194484 cites W3015058572 @default.
- W4308194484 cites W3083891030 @default.
- W4308194484 cites W3085072895 @default.
- W4308194484 cites W3094845650 @default.
- W4308194484 cites W3124099916 @default.
- W4308194484 cites W3127637041 @default.
- W4308194484 cites W3155894390 @default.
- W4308194484 cites W3164746735 @default.
- W4308194484 cites W3170826323 @default.
- W4308194484 cites W3188872815 @default.
- W4308194484 cites W3200434200 @default.
- W4308194484 cites W4200191783 @default.
- W4308194484 cites W4205267589 @default.
- W4308194484 cites W4205904084 @default.
- W4308194484 cites W4220968365 @default.
- W4308194484 doi "https://doi.org/10.1371/journal.pone.0277081" @default.
- W4308194484 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36331942" @default.
- W4308194484 hasPublicationYear "2022" @default.
- W4308194484 type Work @default.
- W4308194484 citedByCount "4" @default.
- W4308194484 countsByYear W43081944842023 @default.
- W4308194484 crossrefType "journal-article" @default.
- W4308194484 hasAuthorship W4308194484A5035980027 @default.
- W4308194484 hasAuthorship W4308194484A5040607253 @default.
- W4308194484 hasAuthorship W4308194484A5042664192 @default.
- W4308194484 hasAuthorship W4308194484A5065112274 @default.
- W4308194484 hasAuthorship W4308194484A5066895530 @default.
- W4308194484 hasAuthorship W4308194484A5073978185 @default.
- W4308194484 hasBestOaLocation W43081944841 @default.
- W4308194484 hasConcept C108583219 @default.
- W4308194484 hasConcept C142724271 @default.
- W4308194484 hasConcept C153180895 @default.
- W4308194484 hasConcept C154945302 @default.
- W4308194484 hasConcept C2779134260 @default.
- W4308194484 hasConcept C2779308522 @default.
- W4308194484 hasConcept C3008058167 @default.
- W4308194484 hasConcept C31972630 @default.
- W4308194484 hasConcept C41008148 @default.
- W4308194484 hasConcept C50644808 @default.
- W4308194484 hasConcept C524204448 @default.
- W4308194484 hasConcept C71924100 @default.
- W4308194484 hasConcept C81363708 @default.
- W4308194484 hasConceptScore W4308194484C108583219 @default.
- W4308194484 hasConceptScore W4308194484C142724271 @default.
- W4308194484 hasConceptScore W4308194484C153180895 @default.
- W4308194484 hasConceptScore W4308194484C154945302 @default.
- W4308194484 hasConceptScore W4308194484C2779134260 @default.
- W4308194484 hasConceptScore W4308194484C2779308522 @default.
- W4308194484 hasConceptScore W4308194484C3008058167 @default.
- W4308194484 hasConceptScore W4308194484C31972630 @default.
- W4308194484 hasConceptScore W4308194484C41008148 @default.
- W4308194484 hasConceptScore W4308194484C50644808 @default.
- W4308194484 hasConceptScore W4308194484C524204448 @default.
- W4308194484 hasConceptScore W4308194484C71924100 @default.
- W4308194484 hasConceptScore W4308194484C81363708 @default.
- W4308194484 hasIssue "11" @default.
- W4308194484 hasLocation W43081944841 @default.
- W4308194484 hasLocation W43081944842 @default.
- W4308194484 hasLocation W43081944843 @default.
- W4308194484 hasLocation W43081944844 @default.
- W4308194484 hasLocation W43081944845 @default.
- W4308194484 hasOpenAccess W4308194484 @default.
- W4308194484 hasPrimaryLocation W43081944841 @default.
- W4308194484 hasRelatedWork W2731899572 @default.
- W4308194484 hasRelatedWork W2999805992 @default.
- W4308194484 hasRelatedWork W3011074480 @default.
- W4308194484 hasRelatedWork W3116150086 @default.
- W4308194484 hasRelatedWork W3133861977 @default.
- W4308194484 hasRelatedWork W3192840557 @default.
- W4308194484 hasRelatedWork W4200173597 @default.
- W4308194484 hasRelatedWork W4291897433 @default.
- W4308194484 hasRelatedWork W4312417841 @default.
- W4308194484 hasRelatedWork W4321369474 @default.
- W4308194484 hasVolume "17" @default.