Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308196316> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W4308196316 endingPage "6863" @default.
- W4308196316 startingPage "6855" @default.
- W4308196316 abstract "In order to alleviate the increasingly serious traffic congestion problem in China, realize intelligent traffic control, and provide accurate and real-time traffic flow prediction data for traffic flow guidance and traffic travel, this paper designs a GPS-based vehicle trajectory fusion optimization deep model BN-LSTM-CNN which makes full use of the temporal and spatial correlation characteristics of dynamic traffic flow to improve the accuracy of short-term traffic flow prediction. The parameters of the historical GPS dynamic trajectory of the traffic network link are converted into a two-dimensional matrix image of time and space relationship. First, the spatial features are input to the CNN network, and the spatial dependence relationship between the links is mined, then the traffic flow time series modeling is performed with a four-layer ConvLSTM network, and the BN normalization layer is added to normalize the activation value of the previous layer on each batch, so that the model can obtain higher training accuracy and quickly complete the prediction of the traffic flow state in a certain period of time in the future. The experimental results show that the prediction model is fast to optimize, the prediction error is the smallest compared with other methods, and it can meet the real-time requirements of urban traffic control." @default.
- W4308196316 created "2022-11-09" @default.
- W4308196316 creator A5009823379 @default.
- W4308196316 creator A5003825950 @default.
- W4308196316 date "2023-04-03" @default.
- W4308196316 modified "2023-10-18" @default.
- W4308196316 title "Traffic flow state prediction based on space-time correlation of vehicle trajectory using the deep hybrid model" @default.
- W4308196316 cites W2024558842 @default.
- W4308196316 cites W2066377449 @default.
- W4308196316 cites W2165991108 @default.
- W4308196316 cites W2217607432 @default.
- W4308196316 cites W2470641485 @default.
- W4308196316 cites W2573587735 @default.
- W4308196316 cites W2583110309 @default.
- W4308196316 cites W2793820729 @default.
- W4308196316 cites W2808956223 @default.
- W4308196316 cites W3002322803 @default.
- W4308196316 cites W3022450334 @default.
- W4308196316 cites W3166144590 @default.
- W4308196316 cites W3185889262 @default.
- W4308196316 doi "https://doi.org/10.3233/jifs-212998" @default.
- W4308196316 hasPublicationYear "2023" @default.
- W4308196316 type Work @default.
- W4308196316 citedByCount "0" @default.
- W4308196316 crossrefType "journal-article" @default.
- W4308196316 hasAuthorship W4308196316A5003825950 @default.
- W4308196316 hasAuthorship W4308196316A5009823379 @default.
- W4308196316 hasConcept C121332964 @default.
- W4308196316 hasConcept C124101348 @default.
- W4308196316 hasConcept C1276947 @default.
- W4308196316 hasConcept C13662910 @default.
- W4308196316 hasConcept C136886441 @default.
- W4308196316 hasConcept C144024400 @default.
- W4308196316 hasConcept C154945302 @default.
- W4308196316 hasConcept C176715033 @default.
- W4308196316 hasConcept C19165224 @default.
- W4308196316 hasConcept C207512268 @default.
- W4308196316 hasConcept C38652104 @default.
- W4308196316 hasConcept C41008148 @default.
- W4308196316 hasConcept C44154836 @default.
- W4308196316 hasConcept C60229501 @default.
- W4308196316 hasConcept C76155785 @default.
- W4308196316 hasConcept C79403827 @default.
- W4308196316 hasConceptScore W4308196316C121332964 @default.
- W4308196316 hasConceptScore W4308196316C124101348 @default.
- W4308196316 hasConceptScore W4308196316C1276947 @default.
- W4308196316 hasConceptScore W4308196316C13662910 @default.
- W4308196316 hasConceptScore W4308196316C136886441 @default.
- W4308196316 hasConceptScore W4308196316C144024400 @default.
- W4308196316 hasConceptScore W4308196316C154945302 @default.
- W4308196316 hasConceptScore W4308196316C176715033 @default.
- W4308196316 hasConceptScore W4308196316C19165224 @default.
- W4308196316 hasConceptScore W4308196316C207512268 @default.
- W4308196316 hasConceptScore W4308196316C38652104 @default.
- W4308196316 hasConceptScore W4308196316C41008148 @default.
- W4308196316 hasConceptScore W4308196316C44154836 @default.
- W4308196316 hasConceptScore W4308196316C60229501 @default.
- W4308196316 hasConceptScore W4308196316C76155785 @default.
- W4308196316 hasConceptScore W4308196316C79403827 @default.
- W4308196316 hasIssue "4" @default.
- W4308196316 hasLocation W43081963161 @default.
- W4308196316 hasOpenAccess W4308196316 @default.
- W4308196316 hasPrimaryLocation W43081963161 @default.
- W4308196316 hasRelatedWork W2052374615 @default.
- W4308196316 hasRelatedWork W2163239346 @default.
- W4308196316 hasRelatedWork W2361078351 @default.
- W4308196316 hasRelatedWork W2394010358 @default.
- W4308196316 hasRelatedWork W239469043 @default.
- W4308196316 hasRelatedWork W2587362999 @default.
- W4308196316 hasRelatedWork W2963251637 @default.
- W4308196316 hasRelatedWork W2986732134 @default.
- W4308196316 hasRelatedWork W432084041 @default.
- W4308196316 hasRelatedWork W1463884142 @default.
- W4308196316 hasVolume "44" @default.
- W4308196316 isParatext "false" @default.
- W4308196316 isRetracted "false" @default.
- W4308196316 workType "article" @default.