Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308197644> ?p ?o ?g. }
- W4308197644 endingPage "7782" @default.
- W4308197644 startingPage "7782" @default.
- W4308197644 abstract "This paper presents the development and evaluation of neural network models using a small input-output dataset to predict the thermal behavior of a high-speed motorized spindles. Different neural multi-output regression models were developed and evaluated using Keras, one of the most popular deep learning frameworks at the moment. ANN was developed and evaluated considering the following: the influence of the topology (number of hidden layers and neurons within), the learning parameter, and validation techniques. The neural network was simulated using a dataset that was completely unknown to the network. The ANN model was used for analyzing the effect of working conditions on the thermal behavior of the motorized grinder spindle. The prediction accuracy of the ANN model for the spindle thermal behavior ranged from 95% to 98%. The results show that the ANN model with small datasets can accurately predict the temperature of the spindle under different working conditions. In addition, the analysis showed a very strong effect of type coolant on spindle unit temperature, particularly for intensive cooling with water." @default.
- W4308197644 created "2022-11-09" @default.
- W4308197644 creator A5016304010 @default.
- W4308197644 creator A5027715681 @default.
- W4308197644 creator A5040085274 @default.
- W4308197644 creator A5043569864 @default.
- W4308197644 creator A5071524238 @default.
- W4308197644 creator A5074558973 @default.
- W4308197644 creator A5086551021 @default.
- W4308197644 date "2022-11-04" @default.
- W4308197644 modified "2023-09-25" @default.
- W4308197644 title "Thermal Behavior Modeling Based on BP Neural Network in Keras Framework for Motorized Machine Tool Spindles" @default.
- W4308197644 cites W1981956318 @default.
- W4308197644 cites W1986494507 @default.
- W4308197644 cites W1986760892 @default.
- W4308197644 cites W1992916837 @default.
- W4308197644 cites W1995429244 @default.
- W4308197644 cites W1998060702 @default.
- W4308197644 cites W1998173819 @default.
- W4308197644 cites W2000576754 @default.
- W4308197644 cites W2004330318 @default.
- W4308197644 cites W2012045413 @default.
- W4308197644 cites W2015012343 @default.
- W4308197644 cites W2025691834 @default.
- W4308197644 cites W2026550880 @default.
- W4308197644 cites W2035565542 @default.
- W4308197644 cites W2040208971 @default.
- W4308197644 cites W2050236706 @default.
- W4308197644 cites W2063088346 @default.
- W4308197644 cites W2067663090 @default.
- W4308197644 cites W2074011020 @default.
- W4308197644 cites W2101927907 @default.
- W4308197644 cites W2280644830 @default.
- W4308197644 cites W2327722233 @default.
- W4308197644 cites W2520651589 @default.
- W4308197644 cites W2576629868 @default.
- W4308197644 cites W2790924798 @default.
- W4308197644 cites W2791740441 @default.
- W4308197644 cites W2795889567 @default.
- W4308197644 cites W2898271446 @default.
- W4308197644 cites W2973043695 @default.
- W4308197644 cites W2973088421 @default.
- W4308197644 cites W2974674707 @default.
- W4308197644 cites W3008657840 @default.
- W4308197644 cites W3089311840 @default.
- W4308197644 cites W3125232139 @default.
- W4308197644 cites W3130780349 @default.
- W4308197644 cites W3134339017 @default.
- W4308197644 cites W3143324034 @default.
- W4308197644 cites W3200943799 @default.
- W4308197644 cites W3213144905 @default.
- W4308197644 cites W4206449479 @default.
- W4308197644 cites W4280583286 @default.
- W4308197644 doi "https://doi.org/10.3390/ma15217782" @default.
- W4308197644 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36363373" @default.
- W4308197644 hasPublicationYear "2022" @default.
- W4308197644 type Work @default.
- W4308197644 citedByCount "4" @default.
- W4308197644 countsByYear W43081976442023 @default.
- W4308197644 crossrefType "journal-article" @default.
- W4308197644 hasAuthorship W4308197644A5016304010 @default.
- W4308197644 hasAuthorship W4308197644A5027715681 @default.
- W4308197644 hasAuthorship W4308197644A5040085274 @default.
- W4308197644 hasAuthorship W4308197644A5043569864 @default.
- W4308197644 hasAuthorship W4308197644A5071524238 @default.
- W4308197644 hasAuthorship W4308197644A5074558973 @default.
- W4308197644 hasAuthorship W4308197644A5086551021 @default.
- W4308197644 hasBestOaLocation W43081976441 @default.
- W4308197644 hasConcept C111919701 @default.
- W4308197644 hasConcept C119857082 @default.
- W4308197644 hasConcept C121332964 @default.
- W4308197644 hasConcept C127413603 @default.
- W4308197644 hasConcept C153294291 @default.
- W4308197644 hasConcept C154945302 @default.
- W4308197644 hasConcept C184304460 @default.
- W4308197644 hasConcept C199845137 @default.
- W4308197644 hasConcept C204530211 @default.
- W4308197644 hasConcept C2777571299 @default.
- W4308197644 hasConcept C41008148 @default.
- W4308197644 hasConcept C50644808 @default.
- W4308197644 hasConcept C78519656 @default.
- W4308197644 hasConcept C91914117 @default.
- W4308197644 hasConceptScore W4308197644C111919701 @default.
- W4308197644 hasConceptScore W4308197644C119857082 @default.
- W4308197644 hasConceptScore W4308197644C121332964 @default.
- W4308197644 hasConceptScore W4308197644C127413603 @default.
- W4308197644 hasConceptScore W4308197644C153294291 @default.
- W4308197644 hasConceptScore W4308197644C154945302 @default.
- W4308197644 hasConceptScore W4308197644C184304460 @default.
- W4308197644 hasConceptScore W4308197644C199845137 @default.
- W4308197644 hasConceptScore W4308197644C204530211 @default.
- W4308197644 hasConceptScore W4308197644C2777571299 @default.
- W4308197644 hasConceptScore W4308197644C41008148 @default.
- W4308197644 hasConceptScore W4308197644C50644808 @default.
- W4308197644 hasConceptScore W4308197644C78519656 @default.
- W4308197644 hasConceptScore W4308197644C91914117 @default.
- W4308197644 hasIssue "21" @default.
- W4308197644 hasLocation W43081976441 @default.