Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308197876> ?p ?o ?g. }
- W4308197876 endingPage "2679" @default.
- W4308197876 startingPage "2679" @default.
- W4308197876 abstract "The assessment of the knee alignment using standing weight-bearing full-leg radiographs (FLR) is a standardized method. Determining the load-bearing axis of the leg requires time-consuming manual measurements. The aim of this study is to develop and validate a novel algorithm based on artificial intelligence (AI) for the automated assessment of lower limb alignment. In the first stage, a customized mask-RCNN model was trained to automatically detect and segment anatomical structures and implants in FLR. In the second stage, four region-specific neural network models (adaptations of UNet) were trained to automatically place anatomical landmarks. In the final stage, this information was used to automatically determine five key lower limb alignment angles. For the validation dataset, weight-bearing, antero-posterior FLR were captured preoperatively and 3 months postoperatively. Preoperative images were measured by the operating orthopedic surgeon and an independent physician. Postoperative images were measured by the second rater only. The final validation dataset consisted of 95 preoperative and 105 postoperative FLR. The detection rate for the different angles ranged between 92.4% and 98.9%. Human vs. human inter-(ICCs: 0.85−0.99) and intra-rater (ICCs: 0.95−1.0) reliability analysis achieved significant agreement. The ICC-values of human vs. AI inter-rater reliability analysis ranged between 0.8 and 1.0 preoperatively and between 0.83 and 0.99 postoperatively (all p < 0.001). An independent and external validation of the proposed algorithm on pre- and postoperative FLR, with excellent reliability for human measurements, could be demonstrated. Hence, the algorithm might allow for the objective and time saving analysis of large datasets and support physicians in daily routine." @default.
- W4308197876 created "2022-11-09" @default.
- W4308197876 creator A5008622304 @default.
- W4308197876 creator A5010904378 @default.
- W4308197876 creator A5026380931 @default.
- W4308197876 creator A5029586605 @default.
- W4308197876 creator A5050992036 @default.
- W4308197876 creator A5061910857 @default.
- W4308197876 creator A5067838878 @default.
- W4308197876 creator A5071874309 @default.
- W4308197876 creator A5077225090 @default.
- W4308197876 date "2022-11-03" @default.
- W4308197876 modified "2023-09-27" @default.
- W4308197876 title "Automated Artificial Intelligence-Based Assessment of Lower Limb Alignment Validated on Weight-Bearing Pre- and Postoperative Full-Leg Radiographs" @default.
- W4308197876 cites W130603023 @default.
- W4308197876 cites W1990192113 @default.
- W4308197876 cites W2006070533 @default.
- W4308197876 cites W2025836730 @default.
- W4308197876 cites W2062549612 @default.
- W4308197876 cites W2125820378 @default.
- W4308197876 cites W2164755729 @default.
- W4308197876 cites W2261734064 @default.
- W4308197876 cites W2429813470 @default.
- W4308197876 cites W2531609154 @default.
- W4308197876 cites W2573215879 @default.
- W4308197876 cites W2880056057 @default.
- W4308197876 cites W2886078629 @default.
- W4308197876 cites W2982453165 @default.
- W4308197876 cites W2986218959 @default.
- W4308197876 cites W2995584038 @default.
- W4308197876 cites W3008007242 @default.
- W4308197876 cites W3100917731 @default.
- W4308197876 cites W3111814324 @default.
- W4308197876 cites W3117342471 @default.
- W4308197876 cites W3130532595 @default.
- W4308197876 cites W3150363874 @default.
- W4308197876 cites W3191798669 @default.
- W4308197876 cites W3194840182 @default.
- W4308197876 cites W3211618787 @default.
- W4308197876 cites W3215576526 @default.
- W4308197876 cites W4223974852 @default.
- W4308197876 cites W4225914735 @default.
- W4308197876 cites W4283316604 @default.
- W4308197876 doi "https://doi.org/10.3390/diagnostics12112679" @default.
- W4308197876 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36359520" @default.
- W4308197876 hasPublicationYear "2022" @default.
- W4308197876 type Work @default.
- W4308197876 citedByCount "0" @default.
- W4308197876 crossrefType "journal-article" @default.
- W4308197876 hasAuthorship W4308197876A5008622304 @default.
- W4308197876 hasAuthorship W4308197876A5010904378 @default.
- W4308197876 hasAuthorship W4308197876A5026380931 @default.
- W4308197876 hasAuthorship W4308197876A5029586605 @default.
- W4308197876 hasAuthorship W4308197876A5050992036 @default.
- W4308197876 hasAuthorship W4308197876A5061910857 @default.
- W4308197876 hasAuthorship W4308197876A5067838878 @default.
- W4308197876 hasAuthorship W4308197876A5071874309 @default.
- W4308197876 hasAuthorship W4308197876A5077225090 @default.
- W4308197876 hasBestOaLocation W43081978761 @default.
- W4308197876 hasConcept C121332964 @default.
- W4308197876 hasConcept C136229726 @default.
- W4308197876 hasConcept C141071460 @default.
- W4308197876 hasConcept C146357865 @default.
- W4308197876 hasConcept C151730666 @default.
- W4308197876 hasConcept C154945302 @default.
- W4308197876 hasConcept C163258240 @default.
- W4308197876 hasConcept C2780204347 @default.
- W4308197876 hasConcept C29694066 @default.
- W4308197876 hasConcept C36454342 @default.
- W4308197876 hasConcept C41008148 @default.
- W4308197876 hasConcept C43214815 @default.
- W4308197876 hasConcept C62520636 @default.
- W4308197876 hasConcept C68312169 @default.
- W4308197876 hasConcept C71924100 @default.
- W4308197876 hasConcept C86803240 @default.
- W4308197876 hasConceptScore W4308197876C121332964 @default.
- W4308197876 hasConceptScore W4308197876C136229726 @default.
- W4308197876 hasConceptScore W4308197876C141071460 @default.
- W4308197876 hasConceptScore W4308197876C146357865 @default.
- W4308197876 hasConceptScore W4308197876C151730666 @default.
- W4308197876 hasConceptScore W4308197876C154945302 @default.
- W4308197876 hasConceptScore W4308197876C163258240 @default.
- W4308197876 hasConceptScore W4308197876C2780204347 @default.
- W4308197876 hasConceptScore W4308197876C29694066 @default.
- W4308197876 hasConceptScore W4308197876C36454342 @default.
- W4308197876 hasConceptScore W4308197876C41008148 @default.
- W4308197876 hasConceptScore W4308197876C43214815 @default.
- W4308197876 hasConceptScore W4308197876C62520636 @default.
- W4308197876 hasConceptScore W4308197876C68312169 @default.
- W4308197876 hasConceptScore W4308197876C71924100 @default.
- W4308197876 hasConceptScore W4308197876C86803240 @default.
- W4308197876 hasIssue "11" @default.
- W4308197876 hasLocation W43081978761 @default.
- W4308197876 hasLocation W43081978762 @default.
- W4308197876 hasLocation W43081978763 @default.
- W4308197876 hasLocation W43081978764 @default.
- W4308197876 hasOpenAccess W4308197876 @default.
- W4308197876 hasPrimaryLocation W43081978761 @default.