Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308201282> ?p ?o ?g. }
- W4308201282 endingPage "13" @default.
- W4308201282 startingPage "1" @default.
- W4308201282 abstract "Abstract Given an irreducible lattice $Gamma $ in the product of higher rank simple Lie groups, we prove a co-finiteness result for the $Gamma $ -invariant von Neumann subalgebras of the group von Neumann algebra $mathcal {L}(Gamma )$ , and for the $Gamma $ -invariant unital $C^*$ -subalgebras of the reduced group $C^*$ -algebra $C^*_{mathrm {red}}(Gamma )$ . We use these results to show that: (i) every $Gamma $ -invariant von Neumann subalgebra of $mathcal {L}(Gamma )$ is generated by a normal subgroup; and (ii) given a weakly mixing unitary representation $pi $ of $Gamma $ , every $Gamma $ -equivariant conditional expectation on $C^*_pi (Gamma )$ is the canonical conditional expectation onto the $C^*$ -subalgebra generated by a normal subgroup." @default.
- W4308201282 created "2022-11-09" @default.
- W4308201282 creator A5052545235 @default.
- W4308201282 creator A5057606372 @default.
- W4308201282 date "2022-11-04" @default.
- W4308201282 modified "2023-10-18" @default.
- W4308201282 title "On invariant subalgebras of group and von Neumann algebras" @default.
- W4308201282 cites W1542817324 @default.
- W4308201282 cites W1829449347 @default.
- W4308201282 cites W1970376392 @default.
- W4308201282 cites W1975960803 @default.
- W4308201282 cites W1981950633 @default.
- W4308201282 cites W1988958559 @default.
- W4308201282 cites W2003322789 @default.
- W4308201282 cites W2009092092 @default.
- W4308201282 cites W2009136834 @default.
- W4308201282 cites W2015411876 @default.
- W4308201282 cites W2033480483 @default.
- W4308201282 cites W2040269142 @default.
- W4308201282 cites W2043455925 @default.
- W4308201282 cites W2085585078 @default.
- W4308201282 cites W2089853741 @default.
- W4308201282 cites W2331274486 @default.
- W4308201282 cites W2334412134 @default.
- W4308201282 cites W2891609201 @default.
- W4308201282 cites W2935044424 @default.
- W4308201282 cites W2962721096 @default.
- W4308201282 cites W2962852242 @default.
- W4308201282 cites W2963776935 @default.
- W4308201282 cites W2969393632 @default.
- W4308201282 cites W3048633979 @default.
- W4308201282 cites W3087406677 @default.
- W4308201282 cites W3088720013 @default.
- W4308201282 cites W3104086839 @default.
- W4308201282 cites W4253908885 @default.
- W4308201282 cites W4281991664 @default.
- W4308201282 cites W4293584463 @default.
- W4308201282 doi "https://doi.org/10.1017/etds.2022.76" @default.
- W4308201282 hasPublicationYear "2022" @default.
- W4308201282 type Work @default.
- W4308201282 citedByCount "1" @default.
- W4308201282 countsByYear W43082012822023 @default.
- W4308201282 crossrefType "journal-article" @default.
- W4308201282 hasAuthorship W4308201282A5052545235 @default.
- W4308201282 hasAuthorship W4308201282A5057606372 @default.
- W4308201282 hasConcept C100376341 @default.
- W4308201282 hasConcept C114614502 @default.
- W4308201282 hasConcept C136119220 @default.
- W4308201282 hasConcept C142292226 @default.
- W4308201282 hasConcept C14394260 @default.
- W4308201282 hasConcept C144133476 @default.
- W4308201282 hasConcept C149782125 @default.
- W4308201282 hasConcept C153408630 @default.
- W4308201282 hasConcept C160873635 @default.
- W4308201282 hasConcept C171036898 @default.
- W4308201282 hasConcept C186215838 @default.
- W4308201282 hasConcept C187915474 @default.
- W4308201282 hasConcept C190470478 @default.
- W4308201282 hasConcept C202444582 @default.
- W4308201282 hasConcept C2776122010 @default.
- W4308201282 hasConcept C2776379255 @default.
- W4308201282 hasConcept C33923547 @default.
- W4308201282 hasConcept C37914503 @default.
- W4308201282 hasConcept C67996461 @default.
- W4308201282 hasConcept C80469333 @default.
- W4308201282 hasConceptScore W4308201282C100376341 @default.
- W4308201282 hasConceptScore W4308201282C114614502 @default.
- W4308201282 hasConceptScore W4308201282C136119220 @default.
- W4308201282 hasConceptScore W4308201282C142292226 @default.
- W4308201282 hasConceptScore W4308201282C14394260 @default.
- W4308201282 hasConceptScore W4308201282C144133476 @default.
- W4308201282 hasConceptScore W4308201282C149782125 @default.
- W4308201282 hasConceptScore W4308201282C153408630 @default.
- W4308201282 hasConceptScore W4308201282C160873635 @default.
- W4308201282 hasConceptScore W4308201282C171036898 @default.
- W4308201282 hasConceptScore W4308201282C186215838 @default.
- W4308201282 hasConceptScore W4308201282C187915474 @default.
- W4308201282 hasConceptScore W4308201282C190470478 @default.
- W4308201282 hasConceptScore W4308201282C202444582 @default.
- W4308201282 hasConceptScore W4308201282C2776122010 @default.
- W4308201282 hasConceptScore W4308201282C2776379255 @default.
- W4308201282 hasConceptScore W4308201282C33923547 @default.
- W4308201282 hasConceptScore W4308201282C37914503 @default.
- W4308201282 hasConceptScore W4308201282C67996461 @default.
- W4308201282 hasConceptScore W4308201282C80469333 @default.
- W4308201282 hasLocation W43082012821 @default.
- W4308201282 hasOpenAccess W4308201282 @default.
- W4308201282 hasPrimaryLocation W43082012821 @default.
- W4308201282 hasRelatedWork W155966263 @default.
- W4308201282 hasRelatedWork W1593433310 @default.
- W4308201282 hasRelatedWork W1755587889 @default.
- W4308201282 hasRelatedWork W1964720090 @default.
- W4308201282 hasRelatedWork W1988460438 @default.
- W4308201282 hasRelatedWork W2042138702 @default.
- W4308201282 hasRelatedWork W2092652087 @default.
- W4308201282 hasRelatedWork W2803850028 @default.
- W4308201282 hasRelatedWork W4287028010 @default.
- W4308201282 hasRelatedWork W4308201282 @default.