Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308201384> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4308201384 endingPage "100869" @default.
- W4308201384 startingPage "100869" @default.
- W4308201384 abstract "Automatic detection of pine wilt disease will be useful in forest management, as it can prevent the spread of epidemics and resulting huge economic losses. Previous studies have reported the precise pine wilt disease detection by combining machine learning algorithms and hyperspectral sensors with platform of unmanned aerial vehicles (UAVs). However, these approaches require expensive hardware and advanced processing techniques, rendering them unsuitable for practical use in on-site forest management. This study deals with the simplification of the automatic detection method, which enables practical countermeasures to be taken by forest management entities. An optimal method for detecting PWD using images obtained by a simple unmanned aerial vehicle (UAV)-mounted visible color sensor is presented in this study. The method combines six major machine learning algorithms: logistic regression, linear support vector machine, support vector machine, k-nearest neighbors, random forest, and artificial neural network, with both RGB and HSV color space datasets. The performance of the six algorithms was validated using the metrics of accuracy, precision, recall, F1-scores, and area under the receiver operating characteristic curve with their 95% confidence intervals. The experimental results show that the combination of the HSV color space dataset with the artificial neural network algorithm is the best performer algorithm (accuracy: 0.995). Moreover, logistic regression, linear support vector machine, support vector machine, and artificial neural network have equally high detection accuracy in the RGB color space (accuracy: 0.990, 0.990, 0.990, 0.985, respectively), with a low possibility of overfitting. These results indicate that the generally used visible color sensors mounted on UAV, which are available at a low cost, can be used for highly accurate detection." @default.
- W4308201384 created "2022-11-09" @default.
- W4308201384 creator A5057020506 @default.
- W4308201384 creator A5063181908 @default.
- W4308201384 creator A5090105117 @default.
- W4308201384 date "2022-11-01" @default.
- W4308201384 modified "2023-09-29" @default.
- W4308201384 title "Performance of machine learning algorithms for detecting pine wilt disease infection using visible color imagery by UAV remote sensing" @default.
- W4308201384 cites W1472067 @default.
- W4308201384 cites W2007300776 @default.
- W4308201384 cites W2042063023 @default.
- W4308201384 cites W2072077887 @default.
- W4308201384 cites W2105443690 @default.
- W4308201384 cites W2153635508 @default.
- W4308201384 cites W2164117960 @default.
- W4308201384 cites W2988414978 @default.
- W4308201384 cites W3018651684 @default.
- W4308201384 cites W3026381557 @default.
- W4308201384 cites W3038245933 @default.
- W4308201384 cites W3084417673 @default.
- W4308201384 cites W3088834583 @default.
- W4308201384 cites W3093950702 @default.
- W4308201384 cites W3178598619 @default.
- W4308201384 cites W3205379064 @default.
- W4308201384 cites W4200429502 @default.
- W4308201384 cites W4205396609 @default.
- W4308201384 cites W4206007256 @default.
- W4308201384 cites W4220706705 @default.
- W4308201384 cites W4285011278 @default.
- W4308201384 doi "https://doi.org/10.1016/j.rsase.2022.100869" @default.
- W4308201384 hasPublicationYear "2022" @default.
- W4308201384 type Work @default.
- W4308201384 citedByCount "1" @default.
- W4308201384 countsByYear W43082013842023 @default.
- W4308201384 crossrefType "journal-article" @default.
- W4308201384 hasAuthorship W4308201384A5057020506 @default.
- W4308201384 hasAuthorship W4308201384A5063181908 @default.
- W4308201384 hasAuthorship W4308201384A5090105117 @default.
- W4308201384 hasConcept C11413529 @default.
- W4308201384 hasConcept C115961682 @default.
- W4308201384 hasConcept C119857082 @default.
- W4308201384 hasConcept C12267149 @default.
- W4308201384 hasConcept C154945302 @default.
- W4308201384 hasConcept C169258074 @default.
- W4308201384 hasConcept C22019652 @default.
- W4308201384 hasConcept C2961294 @default.
- W4308201384 hasConcept C41008148 @default.
- W4308201384 hasConcept C50644808 @default.
- W4308201384 hasConcept C82990744 @default.
- W4308201384 hasConceptScore W4308201384C11413529 @default.
- W4308201384 hasConceptScore W4308201384C115961682 @default.
- W4308201384 hasConceptScore W4308201384C119857082 @default.
- W4308201384 hasConceptScore W4308201384C12267149 @default.
- W4308201384 hasConceptScore W4308201384C154945302 @default.
- W4308201384 hasConceptScore W4308201384C169258074 @default.
- W4308201384 hasConceptScore W4308201384C22019652 @default.
- W4308201384 hasConceptScore W4308201384C2961294 @default.
- W4308201384 hasConceptScore W4308201384C41008148 @default.
- W4308201384 hasConceptScore W4308201384C50644808 @default.
- W4308201384 hasConceptScore W4308201384C82990744 @default.
- W4308201384 hasFunder F4320324670 @default.
- W4308201384 hasFunder F4320326786 @default.
- W4308201384 hasLocation W43082013841 @default.
- W4308201384 hasOpenAccess W4308201384 @default.
- W4308201384 hasPrimaryLocation W43082013841 @default.
- W4308201384 hasRelatedWork W1996541855 @default.
- W4308201384 hasRelatedWork W2003998164 @default.
- W4308201384 hasRelatedWork W2979979539 @default.
- W4308201384 hasRelatedWork W2989932438 @default.
- W4308201384 hasRelatedWork W3004897296 @default.
- W4308201384 hasRelatedWork W3042029410 @default.
- W4308201384 hasRelatedWork W3127425528 @default.
- W4308201384 hasRelatedWork W3195168932 @default.
- W4308201384 hasRelatedWork W4311106074 @default.
- W4308201384 hasRelatedWork W4316087365 @default.
- W4308201384 hasVolume "28" @default.
- W4308201384 isParatext "false" @default.
- W4308201384 isRetracted "false" @default.
- W4308201384 workType "article" @default.