Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308201483> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W4308201483 abstract "Industries occasionally discharge slugs of concentrated pollutants to municipal sewers. These industrial discharges can cause challenges at wastewater treatment plants (WWTPs) and reuse systems. For example, elevated total organic carbon that is refractory through biological wastewater treatment increases the required ozone dose, or even exceeds the capacity of the ozone unit, resulting in a treatment pause or diversion. So, alert systems are necessary for potable reuse. Machine learning has many advantages for alert systems compared to the status quo, fixed thresholds on single variables. In this study, industrial discharges were detected using supervised machine learning and hourly data from sensors within a WWTP and downstream advanced treatment facility for aquifer recharge. Thirty-five different types of machine learning models were screened based on how well they detected an industrial discharge using default tuning parameters. Six models were selected for in-depth evaluation based in their training set accuracy, testing set accuracy, or event sensitivity: Boosted Tree, Cost-Sensitive C5.0, Oblique Random Forest with Support Vector Machines, penalized logistic regression, Random Forest Rule-Based Model, and Support Vector Machines with Radial Basis Function Kernel. After optimizing the tuning parameters and variable selection, Boosted Tree had the highest testing set accuracy, 99.2%. Over the 5-day testing set, it had zero false positives and would have detected the industrial discharge in 1 h. However, setting fixed thresholds based on the maximum normal datapoint within the training set resulted in nearly as good testing set accuracy, 98.3%. Overall, this study was a successful desktop proof-of-concept for a machine learning-based alert system for potable reuse." @default.
- W4308201483 created "2022-11-09" @default.
- W4308201483 creator A5004796441 @default.
- W4308201483 creator A5018170428 @default.
- W4308201483 creator A5032666932 @default.
- W4308201483 creator A5040471437 @default.
- W4308201483 creator A5041166726 @default.
- W4308201483 creator A5061498097 @default.
- W4308201483 creator A5063672666 @default.
- W4308201483 creator A5084253279 @default.
- W4308201483 creator A5091315272 @default.
- W4308201483 date "2022-11-04" @default.
- W4308201483 modified "2023-10-13" @default.
- W4308201483 title "Detecting industrial discharges at an advanced water reuse facility using online instrumentation and supervised machine learning binary classification" @default.
- W4308201483 cites W13188192 @default.
- W4308201483 cites W1596717185 @default.
- W4308201483 cites W1831050183 @default.
- W4308201483 cites W2013857630 @default.
- W4308201483 cites W2015596806 @default.
- W4308201483 cites W2025651937 @default.
- W4308201483 cites W2042890970 @default.
- W4308201483 cites W2053154970 @default.
- W4308201483 cites W2055522016 @default.
- W4308201483 cites W2061324618 @default.
- W4308201483 cites W2087883561 @default.
- W4308201483 cites W2095595785 @default.
- W4308201483 cites W2150757437 @default.
- W4308201483 cites W2161630867 @default.
- W4308201483 cites W2164777277 @default.
- W4308201483 cites W2551654477 @default.
- W4308201483 cites W2606804832 @default.
- W4308201483 cites W2798163535 @default.
- W4308201483 cites W2908404396 @default.
- W4308201483 cites W2911964244 @default.
- W4308201483 cites W3003253418 @default.
- W4308201483 cites W3008621705 @default.
- W4308201483 cites W3043917301 @default.
- W4308201483 cites W3135930459 @default.
- W4308201483 cites W3177823658 @default.
- W4308201483 cites W3193912604 @default.
- W4308201483 cites W3201887525 @default.
- W4308201483 cites W3214800786 @default.
- W4308201483 cites W4231284028 @default.
- W4308201483 cites W2791518061 @default.
- W4308201483 doi "https://doi.org/10.3389/frwa.2022.1014556" @default.
- W4308201483 hasPublicationYear "2022" @default.
- W4308201483 type Work @default.
- W4308201483 citedByCount "2" @default.
- W4308201483 crossrefType "journal-article" @default.
- W4308201483 hasAuthorship W4308201483A5004796441 @default.
- W4308201483 hasAuthorship W4308201483A5018170428 @default.
- W4308201483 hasAuthorship W4308201483A5032666932 @default.
- W4308201483 hasAuthorship W4308201483A5040471437 @default.
- W4308201483 hasAuthorship W4308201483A5041166726 @default.
- W4308201483 hasAuthorship W4308201483A5061498097 @default.
- W4308201483 hasAuthorship W4308201483A5063672666 @default.
- W4308201483 hasAuthorship W4308201483A5084253279 @default.
- W4308201483 hasAuthorship W4308201483A5091315272 @default.
- W4308201483 hasBestOaLocation W43082014831 @default.
- W4308201483 hasConcept C119857082 @default.
- W4308201483 hasConcept C12267149 @default.
- W4308201483 hasConcept C127413603 @default.
- W4308201483 hasConcept C154945302 @default.
- W4308201483 hasConcept C169258074 @default.
- W4308201483 hasConcept C169903167 @default.
- W4308201483 hasConcept C206588197 @default.
- W4308201483 hasConcept C39432304 @default.
- W4308201483 hasConcept C41008148 @default.
- W4308201483 hasConcept C548081761 @default.
- W4308201483 hasConceptScore W4308201483C119857082 @default.
- W4308201483 hasConceptScore W4308201483C12267149 @default.
- W4308201483 hasConceptScore W4308201483C127413603 @default.
- W4308201483 hasConceptScore W4308201483C154945302 @default.
- W4308201483 hasConceptScore W4308201483C169258074 @default.
- W4308201483 hasConceptScore W4308201483C169903167 @default.
- W4308201483 hasConceptScore W4308201483C206588197 @default.
- W4308201483 hasConceptScore W4308201483C39432304 @default.
- W4308201483 hasConceptScore W4308201483C41008148 @default.
- W4308201483 hasConceptScore W4308201483C548081761 @default.
- W4308201483 hasFunder F4320308602 @default.
- W4308201483 hasLocation W43082014831 @default.
- W4308201483 hasLocation W43082014832 @default.
- W4308201483 hasOpenAccess W4308201483 @default.
- W4308201483 hasPrimaryLocation W43082014831 @default.
- W4308201483 hasRelatedWork W1996541855 @default.
- W4308201483 hasRelatedWork W2985924212 @default.
- W4308201483 hasRelatedWork W3195168932 @default.
- W4308201483 hasRelatedWork W3195610867 @default.
- W4308201483 hasRelatedWork W4308191010 @default.
- W4308201483 hasRelatedWork W4321636153 @default.
- W4308201483 hasRelatedWork W4323021782 @default.
- W4308201483 hasRelatedWork W4327511089 @default.
- W4308201483 hasRelatedWork W4377964522 @default.
- W4308201483 hasRelatedWork W4381414210 @default.
- W4308201483 hasVolume "4" @default.
- W4308201483 isParatext "false" @default.
- W4308201483 isRetracted "false" @default.
- W4308201483 workType "article" @default.