Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308201799> ?p ?o ?g. }
- W4308201799 abstract "Computed tomography (CT) imaging results are an important criterion for the diagnosis of lung disease. CT images can clearly show the characteristics of lung lesions. Early and accurate detection of lung diseases helps clinicians to improve patient care effectively. Therefore, in this study, we used a lightweight compact convolutional transformer (CCT) to build a prediction model for lung disease classification using chest CT images. We added a position offset term and changed the attention mechanism of the transformer encoder to an axial attention mechanism module. As a result, the classification performance of the model was improved in terms of height and width. We show that the model effectively classifies COVID-19, community pneumonia, and normal conditions on the CC-CCII dataset. The proposed model outperforms other comparable models in the test set, achieving an accuracy of 98.5% and a sensitivity of 98.6%. The results show that our method achieves a larger field of perception on CT images, which positively affects the classification of CT images. Thus, the method can provide adequate assistance to clinicians." @default.
- W4308201799 created "2022-11-09" @default.
- W4308201799 creator A5007992168 @default.
- W4308201799 creator A5037474559 @default.
- W4308201799 creator A5050009113 @default.
- W4308201799 date "2022-11-04" @default.
- W4308201799 modified "2023-10-18" @default.
- W4308201799 title "CCT: Lightweight compact convolutional transformer for lung disease CT image classification" @default.
- W4308201799 cites W1972226007 @default.
- W4308201799 cites W2096631889 @default.
- W4308201799 cites W2099669741 @default.
- W4308201799 cites W2194775991 @default.
- W4308201799 cites W2581082771 @default.
- W4308201799 cites W2592929672 @default.
- W4308201799 cites W2741201074 @default.
- W4308201799 cites W2905810301 @default.
- W4308201799 cites W2908201961 @default.
- W4308201799 cites W2946185430 @default.
- W4308201799 cites W2980965120 @default.
- W4308201799 cites W2981689412 @default.
- W4308201799 cites W2982083293 @default.
- W4308201799 cites W2998108143 @default.
- W4308201799 cites W3001897055 @default.
- W4308201799 cites W3006882119 @default.
- W4308201799 cites W3007273493 @default.
- W4308201799 cites W3008443627 @default.
- W4308201799 cites W3010381061 @default.
- W4308201799 cites W3011149445 @default.
- W4308201799 cites W3013130152 @default.
- W4308201799 cites W3014561994 @default.
- W4308201799 cites W3017243633 @default.
- W4308201799 cites W3017644243 @default.
- W4308201799 cites W3017855299 @default.
- W4308201799 cites W3020653337 @default.
- W4308201799 cites W3023402713 @default.
- W4308201799 cites W3025948831 @default.
- W4308201799 cites W3026931681 @default.
- W4308201799 cites W3036552116 @default.
- W4308201799 cites W3036638392 @default.
- W4308201799 cites W3037538421 @default.
- W4308201799 cites W3037914312 @default.
- W4308201799 cites W3040660552 @default.
- W4308201799 cites W3048123412 @default.
- W4308201799 cites W3086039674 @default.
- W4308201799 cites W3100327638 @default.
- W4308201799 cites W3105081694 @default.
- W4308201799 cites W3107214063 @default.
- W4308201799 cites W3108656121 @default.
- W4308201799 cites W3129581972 @default.
- W4308201799 cites W3142371777 @default.
- W4308201799 cites W3159778524 @default.
- W4308201799 cites W3178268517 @default.
- W4308201799 cites W4230649743 @default.
- W4308201799 cites W4232356144 @default.
- W4308201799 cites W4292575177 @default.
- W4308201799 doi "https://doi.org/10.3389/fphys.2022.1066999" @default.
- W4308201799 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36406983" @default.
- W4308201799 hasPublicationYear "2022" @default.
- W4308201799 type Work @default.
- W4308201799 citedByCount "1" @default.
- W4308201799 countsByYear W43082017992023 @default.
- W4308201799 crossrefType "journal-article" @default.
- W4308201799 hasAuthorship W4308201799A5007992168 @default.
- W4308201799 hasAuthorship W4308201799A5037474559 @default.
- W4308201799 hasAuthorship W4308201799A5050009113 @default.
- W4308201799 hasBestOaLocation W43082017991 @default.
- W4308201799 hasConcept C111919701 @default.
- W4308201799 hasConcept C118505674 @default.
- W4308201799 hasConcept C119599485 @default.
- W4308201799 hasConcept C126838900 @default.
- W4308201799 hasConcept C127413603 @default.
- W4308201799 hasConcept C153180895 @default.
- W4308201799 hasConcept C154945302 @default.
- W4308201799 hasConcept C165801399 @default.
- W4308201799 hasConcept C175291020 @default.
- W4308201799 hasConcept C199360897 @default.
- W4308201799 hasConcept C41008148 @default.
- W4308201799 hasConcept C544519230 @default.
- W4308201799 hasConcept C66322947 @default.
- W4308201799 hasConcept C71924100 @default.
- W4308201799 hasConceptScore W4308201799C111919701 @default.
- W4308201799 hasConceptScore W4308201799C118505674 @default.
- W4308201799 hasConceptScore W4308201799C119599485 @default.
- W4308201799 hasConceptScore W4308201799C126838900 @default.
- W4308201799 hasConceptScore W4308201799C127413603 @default.
- W4308201799 hasConceptScore W4308201799C153180895 @default.
- W4308201799 hasConceptScore W4308201799C154945302 @default.
- W4308201799 hasConceptScore W4308201799C165801399 @default.
- W4308201799 hasConceptScore W4308201799C175291020 @default.
- W4308201799 hasConceptScore W4308201799C199360897 @default.
- W4308201799 hasConceptScore W4308201799C41008148 @default.
- W4308201799 hasConceptScore W4308201799C544519230 @default.
- W4308201799 hasConceptScore W4308201799C66322947 @default.
- W4308201799 hasConceptScore W4308201799C71924100 @default.
- W4308201799 hasLocation W43082017991 @default.
- W4308201799 hasLocation W43082017992 @default.
- W4308201799 hasLocation W43082017993 @default.
- W4308201799 hasOpenAccess W4308201799 @default.
- W4308201799 hasPrimaryLocation W43082017991 @default.
- W4308201799 hasRelatedWork W2033914206 @default.