Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308202363> ?p ?o ?g. }
- W4308202363 abstract "In the last 2 years, we have witnessed multiple waves of coronavirus that affected millions of people around the globe. The proper cure for COVID-19 has not been diagnosed as vaccinated people also got infected with this disease. Precise and timely detection of COVID-19 can save human lives and protect them from complicated treatment procedures. Researchers have employed several medical imaging modalities like CT-Scan and X-ray for COVID-19 detection, however, little concentration is invested in the ECG imaging analysis. ECGs are quickly available image modality in comparison to CT-Scan and X-ray, therefore, we use them for diagnosing COVID-19. Efficient and effective detection of COVID-19 from the ECG signal is a complex and time-taking task, as researchers usually convert them into numeric values before applying any method which ultimately increases the computational burden. In this work, we tried to overcome these challenges by directly employing the ECG images in a deep-learning (DL)-based approach. More specifically, we introduce an Efficient-ECGNet method that presents an improved version of the EfficientNetV2-B4 model with additional dense layers and is capable of accurately classifying the ECG images into healthy, COVID-19, myocardial infarction (MI), abnormal heartbeats (AHB), and patients with Previous History of Myocardial Infarction (PMI) classes. Moreover, we introduce a module to measure the similarity of COVID-19-affected ECG images with the rest of the diseases. To the best of our knowledge, this is the first effort to approximate the correlation of COVID-19 patients with those having any previous or current history of cardio or respiratory disease. Further, we generate the heatmaps to demonstrate the accurate key-points computation ability of our method. We have performed extensive experimentation on a publicly available dataset to show the robustness of the proposed approach and confirmed that the Efficient-ECGNet framework is reliable to classify the ECG-based COVID-19 samples." @default.
- W4308202363 created "2022-11-09" @default.
- W4308202363 creator A5000682685 @default.
- W4308202363 creator A5010686488 @default.
- W4308202363 creator A5024102795 @default.
- W4308202363 creator A5033753185 @default.
- W4308202363 creator A5053995495 @default.
- W4308202363 creator A5056690703 @default.
- W4308202363 creator A5060010458 @default.
- W4308202363 creator A5062772547 @default.
- W4308202363 creator A5077568501 @default.
- W4308202363 date "2022-11-04" @default.
- W4308202363 modified "2023-10-01" @default.
- W4308202363 title "Efficient-ECGNet framework for COVID-19 classification and correlation prediction with the cardio disease through electrocardiogram medical imaging" @default.
- W4308202363 cites W2097117768 @default.
- W4308202363 cites W2142431032 @default.
- W4308202363 cites W2194775991 @default.
- W4308202363 cites W2399467634 @default.
- W4308202363 cites W2752782242 @default.
- W4308202363 cites W2963163009 @default.
- W4308202363 cites W2963446712 @default.
- W4308202363 cites W3004114601 @default.
- W4308202363 cites W3008568763 @default.
- W4308202363 cites W3012303644 @default.
- W4308202363 cites W3018651684 @default.
- W4308202363 cites W3028427008 @default.
- W4308202363 cites W3036495743 @default.
- W4308202363 cites W3045229273 @default.
- W4308202363 cites W3048123412 @default.
- W4308202363 cites W3080406710 @default.
- W4308202363 cites W3084183795 @default.
- W4308202363 cites W3090140268 @default.
- W4308202363 cites W3091978650 @default.
- W4308202363 cites W3096918659 @default.
- W4308202363 cites W3114958142 @default.
- W4308202363 cites W3118700407 @default.
- W4308202363 cites W3122453825 @default.
- W4308202363 cites W3122466891 @default.
- W4308202363 cites W3124099916 @default.
- W4308202363 cites W3127020108 @default.
- W4308202363 cites W3127181174 @default.
- W4308202363 cites W3135057287 @default.
- W4308202363 cites W3139338041 @default.
- W4308202363 cites W3139833881 @default.
- W4308202363 cites W3155009271 @default.
- W4308202363 cites W3159001838 @default.
- W4308202363 cites W3164746735 @default.
- W4308202363 cites W3166195577 @default.
- W4308202363 cites W3166806759 @default.
- W4308202363 cites W3168474540 @default.
- W4308202363 cites W3177144346 @default.
- W4308202363 cites W3202309904 @default.
- W4308202363 cites W4200525003 @default.
- W4308202363 cites W4225007555 @default.
- W4308202363 cites W4282832311 @default.
- W4308202363 doi "https://doi.org/10.3389/fmed.2022.1005920" @default.
- W4308202363 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36405585" @default.
- W4308202363 hasPublicationYear "2022" @default.
- W4308202363 type Work @default.
- W4308202363 citedByCount "1" @default.
- W4308202363 countsByYear W43082023632023 @default.
- W4308202363 crossrefType "journal-article" @default.
- W4308202363 hasAuthorship W4308202363A5000682685 @default.
- W4308202363 hasAuthorship W4308202363A5010686488 @default.
- W4308202363 hasAuthorship W4308202363A5024102795 @default.
- W4308202363 hasAuthorship W4308202363A5033753185 @default.
- W4308202363 hasAuthorship W4308202363A5053995495 @default.
- W4308202363 hasAuthorship W4308202363A5056690703 @default.
- W4308202363 hasAuthorship W4308202363A5060010458 @default.
- W4308202363 hasAuthorship W4308202363A5062772547 @default.
- W4308202363 hasAuthorship W4308202363A5077568501 @default.
- W4308202363 hasBestOaLocation W43082023631 @default.
- W4308202363 hasConcept C103278499 @default.
- W4308202363 hasConcept C108583219 @default.
- W4308202363 hasConcept C115961682 @default.
- W4308202363 hasConcept C119857082 @default.
- W4308202363 hasConcept C126322002 @default.
- W4308202363 hasConcept C144024400 @default.
- W4308202363 hasConcept C153180895 @default.
- W4308202363 hasConcept C154945302 @default.
- W4308202363 hasConcept C164705383 @default.
- W4308202363 hasConcept C2779134260 @default.
- W4308202363 hasConcept C2779903281 @default.
- W4308202363 hasConcept C2780226545 @default.
- W4308202363 hasConcept C3008058167 @default.
- W4308202363 hasConcept C31601959 @default.
- W4308202363 hasConcept C36289849 @default.
- W4308202363 hasConcept C41008148 @default.
- W4308202363 hasConcept C500558357 @default.
- W4308202363 hasConcept C524204448 @default.
- W4308202363 hasConcept C71924100 @default.
- W4308202363 hasConceptScore W4308202363C103278499 @default.
- W4308202363 hasConceptScore W4308202363C108583219 @default.
- W4308202363 hasConceptScore W4308202363C115961682 @default.
- W4308202363 hasConceptScore W4308202363C119857082 @default.
- W4308202363 hasConceptScore W4308202363C126322002 @default.
- W4308202363 hasConceptScore W4308202363C144024400 @default.
- W4308202363 hasConceptScore W4308202363C153180895 @default.
- W4308202363 hasConceptScore W4308202363C154945302 @default.
- W4308202363 hasConceptScore W4308202363C164705383 @default.