Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308203418> ?p ?o ?g. }
- W4308203418 endingPage "3533" @default.
- W4308203418 startingPage "3533" @default.
- W4308203418 abstract "Floods are among the major natural disasters that cause loss of life and economic damage worldwide. Floods damage homes, crops, roads, and basic infrastructure, forcing people to migrate from high flood-risk areas. However, due to a lack of information about the effective variables in forecasting, the development of an accurate flood forecasting system remains difficult. The flooding process is quite complex as it has a nonlinear relationship with various meteorological and topographic parameters. Therefore, there is always a need to develop regional models that could be used effectively for water resource management in a particular locality. This study aims to establish and evaluate various data-driven flood forecasting models in the Jhelum River, Punjab, Pakistan. The performance of Local Linear Regression (LLR), Dynamic Local Linear Regression (DLLR), Two Layer Back Propagation (TLBP), Conjugate Gradient (CG), and Broyden–Fletcher–Goldfarb–Shanno (BFGS)-based ANN models were evaluated using R2, variance, bias, RMSE and MSE. The R2, bias, and RMSE values of the best-performing LLR model were 0.908, 0.009205, and 1.018017 for training and 0.831, −0.05344, and 0.919695 for testing. Overall, the LLR model performed best for both the training and validation periods and can be used for the prediction of floods in the Jhelum River. Moreover, the model provides a baseline to develop an early warning system for floods in the study area." @default.
- W4308203418 created "2022-11-09" @default.
- W4308203418 creator A5002869113 @default.
- W4308203418 creator A5039845827 @default.
- W4308203418 creator A5041172407 @default.
- W4308203418 creator A5049584264 @default.
- W4308203418 creator A5056582727 @default.
- W4308203418 date "2022-11-03" @default.
- W4308203418 modified "2023-09-30" @default.
- W4308203418 title "Comparison of Different Artificial Intelligence Techniques to Predict Floods in Jhelum River, Pakistan" @default.
- W4308203418 cites W1589475696 @default.
- W4308203418 cites W1833813147 @default.
- W4308203418 cites W1973662977 @default.
- W4308203418 cites W1978390232 @default.
- W4308203418 cites W1986143844 @default.
- W4308203418 cites W1999019684 @default.
- W4308203418 cites W1999411300 @default.
- W4308203418 cites W2009203913 @default.
- W4308203418 cites W2015304908 @default.
- W4308203418 cites W2028535035 @default.
- W4308203418 cites W2035691333 @default.
- W4308203418 cites W2050545426 @default.
- W4308203418 cites W2064184542 @default.
- W4308203418 cites W2069346125 @default.
- W4308203418 cites W2074770406 @default.
- W4308203418 cites W2081670007 @default.
- W4308203418 cites W2083803671 @default.
- W4308203418 cites W2086849905 @default.
- W4308203418 cites W2092617489 @default.
- W4308203418 cites W2105688553 @default.
- W4308203418 cites W2109306224 @default.
- W4308203418 cites W2131434151 @default.
- W4308203418 cites W2159940720 @default.
- W4308203418 cites W2166531054 @default.
- W4308203418 cites W2167101736 @default.
- W4308203418 cites W2255781275 @default.
- W4308203418 cites W2565584425 @default.
- W4308203418 cites W2791646042 @default.
- W4308203418 cites W286182551 @default.
- W4308203418 cites W2893082324 @default.
- W4308203418 cites W2898772968 @default.
- W4308203418 cites W2899642607 @default.
- W4308203418 cites W2943973631 @default.
- W4308203418 cites W2981586399 @default.
- W4308203418 cites W3003741609 @default.
- W4308203418 cites W3007798430 @default.
- W4308203418 cites W3011584394 @default.
- W4308203418 cites W3013115602 @default.
- W4308203418 cites W3014656056 @default.
- W4308203418 cites W3017246359 @default.
- W4308203418 cites W3017291993 @default.
- W4308203418 cites W3045200459 @default.
- W4308203418 cites W3045856894 @default.
- W4308203418 cites W3046610188 @default.
- W4308203418 cites W3087353363 @default.
- W4308203418 cites W3108667378 @default.
- W4308203418 cites W3109645187 @default.
- W4308203418 cites W3110426879 @default.
- W4308203418 cites W3142773759 @default.
- W4308203418 cites W3165653978 @default.
- W4308203418 cites W33460329 @default.
- W4308203418 cites W4214747437 @default.
- W4308203418 cites W4220895157 @default.
- W4308203418 cites W4225623739 @default.
- W4308203418 cites W4281259313 @default.
- W4308203418 cites W4306683196 @default.
- W4308203418 cites W2883879495 @default.
- W4308203418 doi "https://doi.org/10.3390/w14213533" @default.
- W4308203418 hasPublicationYear "2022" @default.
- W4308203418 type Work @default.
- W4308203418 citedByCount "1" @default.
- W4308203418 countsByYear W43082034182023 @default.
- W4308203418 crossrefType "journal-article" @default.
- W4308203418 hasAuthorship W4308203418A5002869113 @default.
- W4308203418 hasAuthorship W4308203418A5039845827 @default.
- W4308203418 hasAuthorship W4308203418A5041172407 @default.
- W4308203418 hasAuthorship W4308203418A5049584264 @default.
- W4308203418 hasAuthorship W4308203418A5056582727 @default.
- W4308203418 hasBestOaLocation W43082034181 @default.
- W4308203418 hasConcept C105795698 @default.
- W4308203418 hasConcept C139945424 @default.
- W4308203418 hasConcept C15744967 @default.
- W4308203418 hasConcept C166957645 @default.
- W4308203418 hasConcept C186594467 @default.
- W4308203418 hasConcept C205649164 @default.
- W4308203418 hasConcept C2778924419 @default.
- W4308203418 hasConcept C29825287 @default.
- W4308203418 hasConcept C33923547 @default.
- W4308203418 hasConcept C39432304 @default.
- W4308203418 hasConcept C41008148 @default.
- W4308203418 hasConcept C542102704 @default.
- W4308203418 hasConcept C74256435 @default.
- W4308203418 hasConcept C76155785 @default.
- W4308203418 hasConceptScore W4308203418C105795698 @default.
- W4308203418 hasConceptScore W4308203418C139945424 @default.
- W4308203418 hasConceptScore W4308203418C15744967 @default.
- W4308203418 hasConceptScore W4308203418C166957645 @default.
- W4308203418 hasConceptScore W4308203418C186594467 @default.