Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308204144> ?p ?o ?g. }
- W4308204144 endingPage "e11382" @default.
- W4308204144 startingPage "e11382" @default.
- W4308204144 abstract "The COVID-19 pandemic had brought changes to individuals, especially in consumer behavior. As the government of different countries has been implementing safety protocols to mitigate the spread of the virus, people became apprehensive about traveling and going out. This paved way for the emergence of third-party logistics (3PL). Statistics have proven the rapid escalation regarding the use of 3PL in various countries. This study utilized Artificial Neural Network and Random Forest Classifier to validate and justify the factors that affect consumer intention in selecting a 3PL service provider during the COVID-19 pandemic integrating the Service Quality Dimensions and Pro-Environmental Theory of Planned Behavior. The findings of this study revealed that attitude is the most significant factor that affects the consumers' behavioral intention. Other factors such as customer satisfaction, customer perceived value, perceived environmental concern, assurance, responsiveness, empathy, reliability, tangibility, perceived behavioral control, subjective norm, and perceived authority support, are all contributing factors that affect behavioral intention. Machine learning algorithms, specifically ANN and RFC, resulted to be reliable in predicting factors as they obtained accuracy rates of 98.56% and 93%. Results presented that consumers' attitude, satisfaction, perceived value, assurance by the 3PL, and perceived environmental concerns were highly influential in choosing a 3PL package carrier. It was seen that people would be encouraged to use 3PL service providers if they demonstrate availability and environmental concerns in catering to the customers' needs. Subsequently, 3PL providers must assure safety and convenience before, during, and after providing the service to ensure continuous patronage of consumers. This is considered to be the first study that utilized a machine learning ensemble to measure behavioral intention for the logistic sector. The framework, analysis tools, and findings of this study could be extended and applied among other behavioral intentions regarding transportation worldwide. Managerial insights among service providers are discussed." @default.
- W4308204144 created "2022-11-09" @default.
- W4308204144 creator A5009218677 @default.
- W4308204144 creator A5059185157 @default.
- W4308204144 creator A5060696852 @default.
- W4308204144 creator A5071243490 @default.
- W4308204144 date "2022-11-01" @default.
- W4308204144 modified "2023-10-17" @default.
- W4308204144 title "Predicting factors affecting the intention to use a 3PL during the COVID-19 pandemic: A machine learning ensemble approach" @default.
- W4308204144 cites W2024131901 @default.
- W4308204144 cites W2028124403 @default.
- W4308204144 cites W2044406766 @default.
- W4308204144 cites W2050026375 @default.
- W4308204144 cites W2059706671 @default.
- W4308204144 cites W2079020577 @default.
- W4308204144 cites W2087244178 @default.
- W4308204144 cites W2341041055 @default.
- W4308204144 cites W2527502053 @default.
- W4308204144 cites W2549645543 @default.
- W4308204144 cites W2551658670 @default.
- W4308204144 cites W2552870026 @default.
- W4308204144 cites W2558945645 @default.
- W4308204144 cites W2561131998 @default.
- W4308204144 cites W2737629146 @default.
- W4308204144 cites W2800423036 @default.
- W4308204144 cites W2889617671 @default.
- W4308204144 cites W2897565540 @default.
- W4308204144 cites W2904416484 @default.
- W4308204144 cites W2926367609 @default.
- W4308204144 cites W2937935607 @default.
- W4308204144 cites W2941348247 @default.
- W4308204144 cites W2947677840 @default.
- W4308204144 cites W2947977315 @default.
- W4308204144 cites W2952949598 @default.
- W4308204144 cites W2963273475 @default.
- W4308204144 cites W2963351669 @default.
- W4308204144 cites W2966234901 @default.
- W4308204144 cites W2977015343 @default.
- W4308204144 cites W2977130042 @default.
- W4308204144 cites W3004018303 @default.
- W4308204144 cites W3009211770 @default.
- W4308204144 cites W3017092817 @default.
- W4308204144 cites W3018173704 @default.
- W4308204144 cites W3025019875 @default.
- W4308204144 cites W3025492829 @default.
- W4308204144 cites W3029164238 @default.
- W4308204144 cites W3034560014 @default.
- W4308204144 cites W3043489156 @default.
- W4308204144 cites W3122460105 @default.
- W4308204144 cites W3184071377 @default.
- W4308204144 cites W3194305391 @default.
- W4308204144 cites W3196838893 @default.
- W4308204144 cites W3198748463 @default.
- W4308204144 cites W3200244128 @default.
- W4308204144 cites W3201299303 @default.
- W4308204144 cites W3207288948 @default.
- W4308204144 cites W3208100126 @default.
- W4308204144 cites W3208475069 @default.
- W4308204144 cites W3211046091 @default.
- W4308204144 cites W3214567845 @default.
- W4308204144 cites W3215663925 @default.
- W4308204144 cites W3216079496 @default.
- W4308204144 cites W4205264399 @default.
- W4308204144 cites W4205931541 @default.
- W4308204144 cites W4206187190 @default.
- W4308204144 cites W4207010409 @default.
- W4308204144 cites W4210307157 @default.
- W4308204144 cites W4210503671 @default.
- W4308204144 cites W4210682415 @default.
- W4308204144 cites W4211039852 @default.
- W4308204144 cites W4211198594 @default.
- W4308204144 cites W4212907416 @default.
- W4308204144 cites W4212929657 @default.
- W4308204144 cites W4220698385 @default.
- W4308204144 cites W4220911108 @default.
- W4308204144 cites W4226017353 @default.
- W4308204144 cites W4229037304 @default.
- W4308204144 cites W4229067273 @default.
- W4308204144 cites W4240969601 @default.
- W4308204144 cites W4280518362 @default.
- W4308204144 cites W4280546661 @default.
- W4308204144 cites W4280580666 @default.
- W4308204144 cites W4295412663 @default.
- W4308204144 doi "https://doi.org/10.1016/j.heliyon.2022.e11382" @default.
- W4308204144 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36349283" @default.
- W4308204144 hasPublicationYear "2022" @default.
- W4308204144 type Work @default.
- W4308204144 citedByCount "17" @default.
- W4308204144 countsByYear W43082041442023 @default.
- W4308204144 crossrefType "journal-article" @default.
- W4308204144 hasAuthorship W4308204144A5009218677 @default.
- W4308204144 hasAuthorship W4308204144A5059185157 @default.
- W4308204144 hasAuthorship W4308204144A5060696852 @default.
- W4308204144 hasAuthorship W4308204144A5071243490 @default.
- W4308204144 hasBestOaLocation W43082041441 @default.
- W4308204144 hasConcept C116537 @default.
- W4308204144 hasConcept C121332964 @default.
- W4308204144 hasConcept C138885662 @default.