Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308216305> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W4308216305 abstract "Lung resections are the most effective treatment option for early stage lung cancer. Clinicians determine whether a patient is operable and the extent a lung can be resected based in part on the patient's pulmonary function parameters. In this study, we investigate the feasibility of generating forced expiratory volume in 1 second (FEV1) and forced vital capacity (FVC) values from preoperative chest computed tomography (CT) scans. Our study population includes 546 individuals who had lung cancer surgery at an oncology specialty clinic between 2009 and 2015. All CT studies and pulmonary function tests (PFTs) were collected within 90 days before a subject's operation. We measure pulmonary function with convolutional neural network and recurrent neural network models, extracting image embeddings from axial CT slices with a ResNet-50 network and generating FEV1 and FVC measurements using a bidirectional long short-term memory regressor. We show that combining feature vectors extracted from mediastinal and lung Hounsfield unit windows and taking a multi-label regression approach improves performance over training with embeddings from only one window or single-task networks trained to measure only FEV1 or FVC values. Our work generates PFT measurements end-to-end and is trained with only computed tomography scans and pulmonary function labels with no manual slice selection, bounding boxes, or segmentation masks." @default.
- W4308216305 created "2022-11-09" @default.
- W4308216305 creator A5005762242 @default.
- W4308216305 creator A5029925322 @default.
- W4308216305 creator A5041485634 @default.
- W4308216305 creator A5058877916 @default.
- W4308216305 creator A5074753535 @default.
- W4308216305 date "2022-09-27" @default.
- W4308216305 modified "2023-09-27" @default.
- W4308216305 title "Automated Pulmonary Function Measurements from Preoperative CT Scans with Deep Learning" @default.
- W4308216305 cites W1978389571 @default.
- W4308216305 cites W2079735306 @default.
- W4308216305 cites W2108598243 @default.
- W4308216305 cites W2112884668 @default.
- W4308216305 cites W2131774270 @default.
- W4308216305 cites W2157853171 @default.
- W4308216305 cites W2183341477 @default.
- W4308216305 cites W2194775991 @default.
- W4308216305 cites W2760946358 @default.
- W4308216305 cites W2894319790 @default.
- W4308216305 cites W2913204420 @default.
- W4308216305 cites W2940487144 @default.
- W4308216305 cites W2941856299 @default.
- W4308216305 cites W2963446712 @default.
- W4308216305 cites W2991791649 @default.
- W4308216305 cites W3128646645 @default.
- W4308216305 cites W3202358806 @default.
- W4308216305 cites W3217073143 @default.
- W4308216305 doi "https://doi.org/10.1109/bhi56158.2022.9926796" @default.
- W4308216305 hasPublicationYear "2022" @default.
- W4308216305 type Work @default.
- W4308216305 citedByCount "0" @default.
- W4308216305 crossrefType "proceedings-article" @default.
- W4308216305 hasAuthorship W4308216305A5005762242 @default.
- W4308216305 hasAuthorship W4308216305A5029925322 @default.
- W4308216305 hasAuthorship W4308216305A5041485634 @default.
- W4308216305 hasAuthorship W4308216305A5058877916 @default.
- W4308216305 hasAuthorship W4308216305A5074753535 @default.
- W4308216305 hasConcept C126322002 @default.
- W4308216305 hasConcept C126838900 @default.
- W4308216305 hasConcept C154945302 @default.
- W4308216305 hasConcept C165637977 @default.
- W4308216305 hasConcept C187954543 @default.
- W4308216305 hasConcept C27101514 @default.
- W4308216305 hasConcept C2776256026 @default.
- W4308216305 hasConcept C2777405583 @default.
- W4308216305 hasConcept C2777714996 @default.
- W4308216305 hasConcept C2989005 @default.
- W4308216305 hasConcept C3018587741 @default.
- W4308216305 hasConcept C41008148 @default.
- W4308216305 hasConcept C544519230 @default.
- W4308216305 hasConcept C55520419 @default.
- W4308216305 hasConcept C71924100 @default.
- W4308216305 hasConcept C75603125 @default.
- W4308216305 hasConcept C81363708 @default.
- W4308216305 hasConceptScore W4308216305C126322002 @default.
- W4308216305 hasConceptScore W4308216305C126838900 @default.
- W4308216305 hasConceptScore W4308216305C154945302 @default.
- W4308216305 hasConceptScore W4308216305C165637977 @default.
- W4308216305 hasConceptScore W4308216305C187954543 @default.
- W4308216305 hasConceptScore W4308216305C27101514 @default.
- W4308216305 hasConceptScore W4308216305C2776256026 @default.
- W4308216305 hasConceptScore W4308216305C2777405583 @default.
- W4308216305 hasConceptScore W4308216305C2777714996 @default.
- W4308216305 hasConceptScore W4308216305C2989005 @default.
- W4308216305 hasConceptScore W4308216305C3018587741 @default.
- W4308216305 hasConceptScore W4308216305C41008148 @default.
- W4308216305 hasConceptScore W4308216305C544519230 @default.
- W4308216305 hasConceptScore W4308216305C55520419 @default.
- W4308216305 hasConceptScore W4308216305C71924100 @default.
- W4308216305 hasConceptScore W4308216305C75603125 @default.
- W4308216305 hasConceptScore W4308216305C81363708 @default.
- W4308216305 hasLocation W43082163051 @default.
- W4308216305 hasOpenAccess W4308216305 @default.
- W4308216305 hasPrimaryLocation W43082163051 @default.
- W4308216305 hasRelatedWork W1988593955 @default.
- W4308216305 hasRelatedWork W2043119068 @default.
- W4308216305 hasRelatedWork W2136234749 @default.
- W4308216305 hasRelatedWork W2276853223 @default.
- W4308216305 hasRelatedWork W2381728021 @default.
- W4308216305 hasRelatedWork W2591994030 @default.
- W4308216305 hasRelatedWork W2790522458 @default.
- W4308216305 hasRelatedWork W3030181184 @default.
- W4308216305 hasRelatedWork W4308216305 @default.
- W4308216305 hasRelatedWork W63246552 @default.
- W4308216305 isParatext "false" @default.
- W4308216305 isRetracted "false" @default.
- W4308216305 workType "article" @default.