Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308222472> ?p ?o ?g. }
- W4308222472 abstract "Antenatal depression impacts 7-20% of women globally, and can have serious consequences for both the mother and the infant. Preventative interventions are effective, but are cost-efficient only among those at high risk. As such, being able to predict and identify those at risk is invaluable for reducing the burden of care and adverse consequences, as well as improving treatment outcomes. While several approaches have been proposed in the literature for the automatic prediction of depressive states, there is a scarcity of research on automatic prediction of perinatal depression. Moreover, while there exist some works on the automatic prediction of postpartum depression using data collected in clinical settings and applied the model to a smartphone application, to the best of our knowledge, no previous work has investigated the automatic prediction of late antenatal depression using data collected via a smartphone app in the first and second trimesters of pregnancy. This study utilizes data measuring various aspects of self-reported psychological, physiological and behavioral information, collected from 915 women in the first and second trimester of pregnancy using a smartphone app designed for perinatal depression. By applying machine learning algorithms on these data, this paper explores the possibility of automatic early detection of antenatal depression (i.e., during week 36 to week 42 of pregnancy) in everyday life without the administration of healthcare professionals. We compare uni-modal and multi-modal models and identify predictive markers related to antenatal depression. With multi-modal approach the model reaches a BAC of 0.75, and an AUC of 0.82." @default.
- W4308222472 created "2022-11-09" @default.
- W4308222472 creator A5013385023 @default.
- W4308222472 creator A5014668082 @default.
- W4308222472 creator A5022929194 @default.
- W4308222472 creator A5050379473 @default.
- W4308222472 creator A5074325353 @default.
- W4308222472 date "2022-11-07" @default.
- W4308222472 modified "2023-10-05" @default.
- W4308222472 title "Unimodal vs. Multimodal Prediction of Antenatal Depression from Smartphone-based Survey Data in a Longitudinal Study" @default.
- W4308222472 cites W1927417898 @default.
- W4308222472 cites W1970602071 @default.
- W4308222472 cites W1978234847 @default.
- W4308222472 cites W1999630700 @default.
- W4308222472 cites W2019685630 @default.
- W4308222472 cites W2032904874 @default.
- W4308222472 cites W2043080619 @default.
- W4308222472 cites W2047797070 @default.
- W4308222472 cites W2055155649 @default.
- W4308222472 cites W2055800023 @default.
- W4308222472 cites W2064747454 @default.
- W4308222472 cites W2064866219 @default.
- W4308222472 cites W2066806488 @default.
- W4308222472 cites W2071767222 @default.
- W4308222472 cites W2079898146 @default.
- W4308222472 cites W2084991563 @default.
- W4308222472 cites W2097715719 @default.
- W4308222472 cites W2099128126 @default.
- W4308222472 cites W2100358124 @default.
- W4308222472 cites W2104714048 @default.
- W4308222472 cites W2112997260 @default.
- W4308222472 cites W2115744219 @default.
- W4308222472 cites W2120154125 @default.
- W4308222472 cites W2121778399 @default.
- W4308222472 cites W2128900442 @default.
- W4308222472 cites W2130892589 @default.
- W4308222472 cites W2136409902 @default.
- W4308222472 cites W2146150050 @default.
- W4308222472 cites W2147085624 @default.
- W4308222472 cites W2155002669 @default.
- W4308222472 cites W2160767978 @default.
- W4308222472 cites W2168505965 @default.
- W4308222472 cites W2217303271 @default.
- W4308222472 cites W2336511170 @default.
- W4308222472 cites W2347128633 @default.
- W4308222472 cites W2519191729 @default.
- W4308222472 cites W2523845714 @default.
- W4308222472 cites W2604625614 @default.
- W4308222472 cites W2750343062 @default.
- W4308222472 cites W2759476730 @default.
- W4308222472 cites W2767090747 @default.
- W4308222472 cites W2773200854 @default.
- W4308222472 cites W2892246074 @default.
- W4308222472 cites W2896957784 @default.
- W4308222472 cites W2907554860 @default.
- W4308222472 cites W2913785089 @default.
- W4308222472 cites W2913997948 @default.
- W4308222472 cites W2926445708 @default.
- W4308222472 cites W2943494044 @default.
- W4308222472 cites W2965619034 @default.
- W4308222472 cites W2985076077 @default.
- W4308222472 cites W2995201943 @default.
- W4308222472 cites W2995282879 @default.
- W4308222472 cites W3002909830 @default.
- W4308222472 cites W3003035376 @default.
- W4308222472 cites W3021203631 @default.
- W4308222472 cites W3024932957 @default.
- W4308222472 cites W3043083589 @default.
- W4308222472 cites W3049624046 @default.
- W4308222472 cites W3102476541 @default.
- W4308222472 cites W3109650690 @default.
- W4308222472 cites W3130973276 @default.
- W4308222472 cites W3134361123 @default.
- W4308222472 cites W3182029195 @default.
- W4308222472 cites W4205555191 @default.
- W4308222472 cites W4210328027 @default.
- W4308222472 cites W4224281318 @default.
- W4308222472 cites W4225089260 @default.
- W4308222472 doi "https://doi.org/10.1145/3536221.3556605" @default.
- W4308222472 hasPublicationYear "2022" @default.
- W4308222472 type Work @default.
- W4308222472 citedByCount "2" @default.
- W4308222472 countsByYear W43082224722023 @default.
- W4308222472 crossrefType "proceedings-article" @default.
- W4308222472 hasAuthorship W4308222472A5013385023 @default.
- W4308222472 hasAuthorship W4308222472A5014668082 @default.
- W4308222472 hasAuthorship W4308222472A5022929194 @default.
- W4308222472 hasAuthorship W4308222472A5050379473 @default.
- W4308222472 hasAuthorship W4308222472A5074325353 @default.
- W4308222472 hasBestOaLocation W43082224721 @default.
- W4308222472 hasConcept C118552586 @default.
- W4308222472 hasConcept C119857082 @default.
- W4308222472 hasConcept C139719470 @default.
- W4308222472 hasConcept C154945302 @default.
- W4308222472 hasConcept C15744967 @default.
- W4308222472 hasConcept C162324750 @default.
- W4308222472 hasConcept C27415008 @default.
- W4308222472 hasConcept C2776867660 @default.
- W4308222472 hasConcept C2779234561 @default.
- W4308222472 hasConcept C3019858935 @default.