Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308222719> ?p ?o ?g. }
- W4308222719 abstract "When the mental acuity of older adults deteriorates (e.g., dementia), irregular patterns manifest within their activities of daily living (ADL), which renders an effective opportunity for healthcare providers to monitor patients’ mental status. Although successful, such studies depended on supervised learning approaches to recognize ADLs, which require tedious human observation and manual annotation of data. To establish a more efficient alternative, this study develops an unsupervised data segmentation process by modifying a Superpixels Extracted via Energy Driven Sampling (SEEDS) algorithm and a hierarchical clustering method effective for high-dimensional temporal sensor data. The proposed approaches consider the spatiotemporal features (e.g., start time, duration, location, and sequence) and activity-oriented features (e.g., motion intensity and appliance usages) to identify ADL routines without necessitating predefined rules or limiting the scope of features. The results showed that the proposed approaches have comparable accuracy (0.788) to benchmark models that require a priori knowledge (e.g., ontology). Our proposed methodology can be extended to high-dimensional, nonintrusive sensing data to capture the variability of ADL routines in the future. This study contributes a methodological advance for efficiently assessing ADL routines via high-dimensional sensor data and supports future opportunities for capitalizing on smart home technologies that enable older adults to live alone safely, aging-in-place." @default.
- W4308222719 created "2022-11-09" @default.
- W4308222719 creator A5029799530 @default.
- W4308222719 creator A5054760034 @default.
- W4308222719 creator A5074670878 @default.
- W4308222719 creator A5084121817 @default.
- W4308222719 date "2023-01-01" @default.
- W4308222719 modified "2023-10-17" @default.
- W4308222719 title "Assessing Daily Activity Routines Using an Unsupervised Approach in a Smart Home Environment" @default.
- W4308222719 cites W154726477 @default.
- W4308222719 cites W1894414046 @default.
- W4308222719 cites W1967974729 @default.
- W4308222719 cites W1968703316 @default.
- W4308222719 cites W1976175768 @default.
- W4308222719 cites W1996973619 @default.
- W4308222719 cites W1999478155 @default.
- W4308222719 cites W2015200434 @default.
- W4308222719 cites W2015778111 @default.
- W4308222719 cites W2026882380 @default.
- W4308222719 cites W2034281151 @default.
- W4308222719 cites W2038364707 @default.
- W4308222719 cites W2043139329 @default.
- W4308222719 cites W2045299870 @default.
- W4308222719 cites W2051224630 @default.
- W4308222719 cites W2056884786 @default.
- W4308222719 cites W2071210425 @default.
- W4308222719 cites W2082888943 @default.
- W4308222719 cites W2085487226 @default.
- W4308222719 cites W2095196265 @default.
- W4308222719 cites W2096579040 @default.
- W4308222719 cites W2097250277 @default.
- W4308222719 cites W2113586398 @default.
- W4308222719 cites W2123874805 @default.
- W4308222719 cites W2126751256 @default.
- W4308222719 cites W2128640743 @default.
- W4308222719 cites W2137418393 @default.
- W4308222719 cites W2153506531 @default.
- W4308222719 cites W2166155484 @default.
- W4308222719 cites W2267337814 @default.
- W4308222719 cites W2312995878 @default.
- W4308222719 cites W2506504620 @default.
- W4308222719 cites W2507418274 @default.
- W4308222719 cites W2525214876 @default.
- W4308222719 cites W2560311620 @default.
- W4308222719 cites W2561722228 @default.
- W4308222719 cites W2586341316 @default.
- W4308222719 cites W2588951189 @default.
- W4308222719 cites W2611683807 @default.
- W4308222719 cites W2611708998 @default.
- W4308222719 cites W2735959442 @default.
- W4308222719 cites W2791951661 @default.
- W4308222719 cites W2802522645 @default.
- W4308222719 cites W2803944058 @default.
- W4308222719 cites W2804865177 @default.
- W4308222719 cites W2845381715 @default.
- W4308222719 cites W2886410470 @default.
- W4308222719 cites W2887210265 @default.
- W4308222719 cites W2910408172 @default.
- W4308222719 cites W2913322425 @default.
- W4308222719 cites W2914347169 @default.
- W4308222719 cites W2961568450 @default.
- W4308222719 cites W2962766617 @default.
- W4308222719 cites W2963407077 @default.
- W4308222719 cites W2987948011 @default.
- W4308222719 cites W2989412182 @default.
- W4308222719 cites W2998094553 @default.
- W4308222719 cites W3010045692 @default.
- W4308222719 cites W3025030523 @default.
- W4308222719 cites W3049524814 @default.
- W4308222719 cites W3082883694 @default.
- W4308222719 cites W3098097841 @default.
- W4308222719 cites W3112592442 @default.
- W4308222719 cites W3117789146 @default.
- W4308222719 cites W4223469422 @default.
- W4308222719 doi "https://doi.org/10.1061/jccee5.cpeng-4895" @default.
- W4308222719 hasPublicationYear "2023" @default.
- W4308222719 type Work @default.
- W4308222719 citedByCount "0" @default.
- W4308222719 crossrefType "journal-article" @default.
- W4308222719 hasAuthorship W4308222719A5029799530 @default.
- W4308222719 hasAuthorship W4308222719A5054760034 @default.
- W4308222719 hasAuthorship W4308222719A5074670878 @default.
- W4308222719 hasAuthorship W4308222719A5084121817 @default.
- W4308222719 hasConcept C111919701 @default.
- W4308222719 hasConcept C112758219 @default.
- W4308222719 hasConcept C118552586 @default.
- W4308222719 hasConcept C119857082 @default.
- W4308222719 hasConcept C121687571 @default.
- W4308222719 hasConcept C124101348 @default.
- W4308222719 hasConcept C124952713 @default.
- W4308222719 hasConcept C13280743 @default.
- W4308222719 hasConcept C142362112 @default.
- W4308222719 hasConcept C154945302 @default.
- W4308222719 hasConcept C15744967 @default.
- W4308222719 hasConcept C185798385 @default.
- W4308222719 hasConcept C205649164 @default.
- W4308222719 hasConcept C41008148 @default.
- W4308222719 hasConcept C507571656 @default.
- W4308222719 hasConcept C73555534 @default.
- W4308222719 hasConcept C76155785 @default.