Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308222788> ?p ?o ?g. }
- W4308222788 abstract "The use of digital breast tomosynthesis (DBT) in breast cancer screening has become widely accepted, facilitating increased cancer detection and lower recall rates compared with those achieved by using full-field digital mammography (DM). However, the use of DBT, as compared with DM, raises new challenges, including a larger number of acquired images and thus longer interpretation times. While most current artificial intelligence (AI) applications are developed for DM, there are multiple potential opportunities for AI to augment the benefits of DBT. During the diagnostic steps of lesion detection, characterization, and classification, AI algorithms may not only assist in the detection of indeterminate or suspicious findings but also aid in predicting the likelihood of malignancy for a particular lesion. During image acquisition and processing, AI algorithms may help reduce radiation dose and improve lesion conspicuity on synthetic two-dimensional DM images. The use of AI algorithms may also improve workflow efficiency and decrease the radiologist's interpretation time. There has been significant growth in research that applies AI to DBT, with several algorithms approved by the U.S. Food and Drug Administration for clinical implementation. Further development of AI models for DBT has the potential to lead to improved practice efficiency and ultimately improved patient health outcomes of breast cancer screening and diagnostic evaluation. See the invited commentary by Bahl in this issue. ©RSNA, 2022." @default.
- W4308222788 created "2022-11-09" @default.
- W4308222788 creator A5049693451 @default.
- W4308222788 creator A5054427605 @default.
- W4308222788 creator A5057381745 @default.
- W4308222788 creator A5064539976 @default.
- W4308222788 creator A5080296152 @default.
- W4308222788 creator A5089245216 @default.
- W4308222788 creator A5089302664 @default.
- W4308222788 date "2023-01-01" @default.
- W4308222788 modified "2023-10-16" @default.
- W4308222788 title "New Horizons: Artificial Intelligence for Digital Breast Tomosynthesis" @default.
- W4308222788 cites W1780324370 @default.
- W4308222788 cites W1917647701 @default.
- W4308222788 cites W2022975303 @default.
- W4308222788 cites W2030069582 @default.
- W4308222788 cites W2088005510 @default.
- W4308222788 cites W2092688199 @default.
- W4308222788 cites W2111066681 @default.
- W4308222788 cites W2123869011 @default.
- W4308222788 cites W2133911584 @default.
- W4308222788 cites W2149291062 @default.
- W4308222788 cites W2580825752 @default.
- W4308222788 cites W2765666676 @default.
- W4308222788 cites W2790308029 @default.
- W4308222788 cites W2796345789 @default.
- W4308222788 cites W2808027652 @default.
- W4308222788 cites W2808246205 @default.
- W4308222788 cites W2885841583 @default.
- W4308222788 cites W2887687623 @default.
- W4308222788 cites W2899000882 @default.
- W4308222788 cites W2918598741 @default.
- W4308222788 cites W2929384361 @default.
- W4308222788 cites W2944016032 @default.
- W4308222788 cites W2946108055 @default.
- W4308222788 cites W2966665347 @default.
- W4308222788 cites W2975029521 @default.
- W4308222788 cites W2977601947 @default.
- W4308222788 cites W2995162454 @default.
- W4308222788 cites W2996116683 @default.
- W4308222788 cites W3035655244 @default.
- W4308222788 cites W3048690458 @default.
- W4308222788 cites W3082353898 @default.
- W4308222788 cites W3093064335 @default.
- W4308222788 cites W3110873154 @default.
- W4308222788 cites W3118741877 @default.
- W4308222788 cites W3130426954 @default.
- W4308222788 cites W3135221298 @default.
- W4308222788 cites W3135792245 @default.
- W4308222788 cites W3136961553 @default.
- W4308222788 cites W3141480089 @default.
- W4308222788 cites W3155494626 @default.
- W4308222788 cites W3158418391 @default.
- W4308222788 cites W3159635797 @default.
- W4308222788 cites W3162176327 @default.
- W4308222788 cites W3180226778 @default.
- W4308222788 cites W3183576075 @default.
- W4308222788 cites W3185134688 @default.
- W4308222788 cites W3201070283 @default.
- W4308222788 cites W3201379879 @default.
- W4308222788 cites W3204096935 @default.
- W4308222788 cites W4200191097 @default.
- W4308222788 cites W4200319345 @default.
- W4308222788 cites W4206214763 @default.
- W4308222788 cites W4206285699 @default.
- W4308222788 cites W4212836397 @default.
- W4308222788 cites W4213083727 @default.
- W4308222788 cites W2898846750 @default.
- W4308222788 doi "https://doi.org/10.1148/rg.220060" @default.
- W4308222788 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36331878" @default.
- W4308222788 hasPublicationYear "2023" @default.
- W4308222788 type Work @default.
- W4308222788 citedByCount "2" @default.
- W4308222788 countsByYear W43082227882023 @default.
- W4308222788 crossrefType "journal-article" @default.
- W4308222788 hasAuthorship W4308222788A5049693451 @default.
- W4308222788 hasAuthorship W4308222788A5054427605 @default.
- W4308222788 hasAuthorship W4308222788A5057381745 @default.
- W4308222788 hasAuthorship W4308222788A5064539976 @default.
- W4308222788 hasAuthorship W4308222788A5080296152 @default.
- W4308222788 hasAuthorship W4308222788A5089245216 @default.
- W4308222788 hasAuthorship W4308222788A5089302664 @default.
- W4308222788 hasConcept C119857082 @default.
- W4308222788 hasConcept C121608353 @default.
- W4308222788 hasConcept C126322002 @default.
- W4308222788 hasConcept C126838900 @default.
- W4308222788 hasConcept C142724271 @default.
- W4308222788 hasConcept C154945302 @default.
- W4308222788 hasConcept C177212765 @default.
- W4308222788 hasConcept C19527891 @default.
- W4308222788 hasConcept C2777432617 @default.
- W4308222788 hasConcept C2778491387 @default.
- W4308222788 hasConcept C2779399171 @default.
- W4308222788 hasConcept C2780472235 @default.
- W4308222788 hasConcept C2781281974 @default.
- W4308222788 hasConcept C2909182381 @default.
- W4308222788 hasConcept C41008148 @default.
- W4308222788 hasConcept C530470458 @default.
- W4308222788 hasConcept C71924100 @default.
- W4308222788 hasConcept C77088390 @default.