Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308232502> ?p ?o ?g. }
- W4308232502 endingPage "939" @default.
- W4308232502 startingPage "931" @default.
- W4308232502 abstract "Machine learning and artificial intelligence (ML/AI) are rapidly becoming an indispensable part of physics research, with applications ranging from theory and materials prediction to high-throughput data analysis. In parallel, the recent successes in applying ML/AI methods for autonomous systems from robotics through self-driving cars to organic and inorganic synthesis are generating enthusiasm for the potential of these techniques to enable automated and autonomous experiment in imaging. In this article, we discuss recent progress in application of machine learning methods in scanning transmission electron microscopy and scanning probe microscopy, from applications such as data compression and exploratory data analysis to physics learning to atomic fabrication." @default.
- W4308232502 created "2022-11-09" @default.
- W4308232502 creator A5006948939 @default.
- W4308232502 creator A5013879711 @default.
- W4308232502 creator A5024871823 @default.
- W4308232502 creator A5029611334 @default.
- W4308232502 creator A5030070049 @default.
- W4308232502 creator A5048552375 @default.
- W4308232502 creator A5049980178 @default.
- W4308232502 creator A5075870873 @default.
- W4308232502 date "2022-09-01" @default.
- W4308232502 modified "2023-10-14" @default.
- W4308232502 title "Deep learning for electron and scanning probe microscopy: From materials design to atomic fabrication" @default.
- W4308232502 cites W1963609014 @default.
- W4308232502 cites W1965702561 @default.
- W4308232502 cites W1979365211 @default.
- W4308232502 cites W1983631682 @default.
- W4308232502 cites W1996391948 @default.
- W4308232502 cites W1997985818 @default.
- W4308232502 cites W2066744201 @default.
- W4308232502 cites W2074071059 @default.
- W4308232502 cites W2078291005 @default.
- W4308232502 cites W2082804203 @default.
- W4308232502 cites W2105279014 @default.
- W4308232502 cites W2111124526 @default.
- W4308232502 cites W2142161929 @default.
- W4308232502 cites W2157900895 @default.
- W4308232502 cites W2396073886 @default.
- W4308232502 cites W2404097626 @default.
- W4308232502 cites W2525254816 @default.
- W4308232502 cites W2554567359 @default.
- W4308232502 cites W2592929672 @default.
- W4308232502 cites W2594399778 @default.
- W4308232502 cites W2595874288 @default.
- W4308232502 cites W2745441039 @default.
- W4308232502 cites W2755512750 @default.
- W4308232502 cites W2766211780 @default.
- W4308232502 cites W2767509850 @default.
- W4308232502 cites W2771733300 @default.
- W4308232502 cites W2776673741 @default.
- W4308232502 cites W2786162343 @default.
- W4308232502 cites W2787089463 @default.
- W4308232502 cites W2801148178 @default.
- W4308232502 cites W2835210520 @default.
- W4308232502 cites W2842665777 @default.
- W4308232502 cites W2908088081 @default.
- W4308232502 cites W2913076990 @default.
- W4308232502 cites W2919115771 @default.
- W4308232502 cites W2945244721 @default.
- W4308232502 cites W2948059253 @default.
- W4308232502 cites W2963475663 @default.
- W4308232502 cites W2964699766 @default.
- W4308232502 cites W2966107017 @default.
- W4308232502 cites W2981466594 @default.
- W4308232502 cites W3009597978 @default.
- W4308232502 cites W3013379800 @default.
- W4308232502 cites W3030446860 @default.
- W4308232502 cites W3033667406 @default.
- W4308232502 cites W3035004501 @default.
- W4308232502 cites W3045580189 @default.
- W4308232502 cites W3082473084 @default.
- W4308232502 cites W3087753546 @default.
- W4308232502 cites W3094545446 @default.
- W4308232502 cites W3100445615 @default.
- W4308232502 cites W3101184832 @default.
- W4308232502 cites W3101744697 @default.
- W4308232502 cites W3102707567 @default.
- W4308232502 cites W3103572015 @default.
- W4308232502 cites W3105636786 @default.
- W4308232502 cites W3153542881 @default.
- W4308232502 cites W3173909602 @default.
- W4308232502 cites W3183861986 @default.
- W4308232502 cites W3191107070 @default.
- W4308232502 cites W3201816734 @default.
- W4308232502 cites W3203221142 @default.
- W4308232502 cites W3213050812 @default.
- W4308232502 doi "https://doi.org/10.1557/s43577-022-00413-3" @default.
- W4308232502 hasPublicationYear "2022" @default.
- W4308232502 type Work @default.
- W4308232502 citedByCount "8" @default.
- W4308232502 countsByYear W43082325022022 @default.
- W4308232502 countsByYear W43082325022023 @default.
- W4308232502 crossrefType "journal-article" @default.
- W4308232502 hasAuthorship W4308232502A5006948939 @default.
- W4308232502 hasAuthorship W4308232502A5013879711 @default.
- W4308232502 hasAuthorship W4308232502A5024871823 @default.
- W4308232502 hasAuthorship W4308232502A5029611334 @default.
- W4308232502 hasAuthorship W4308232502A5030070049 @default.
- W4308232502 hasAuthorship W4308232502A5048552375 @default.
- W4308232502 hasAuthorship W4308232502A5049980178 @default.
- W4308232502 hasAuthorship W4308232502A5075870873 @default.
- W4308232502 hasBestOaLocation W43082325021 @default.
- W4308232502 hasConcept C136525101 @default.
- W4308232502 hasConcept C142724271 @default.
- W4308232502 hasConcept C154945302 @default.
- W4308232502 hasConcept C159985019 @default.
- W4308232502 hasConcept C171250308 @default.
- W4308232502 hasConcept C192562407 @default.