Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308235786> ?p ?o ?g. }
- W4308235786 abstract "Deep learning (DL) based single image super-resolution (SISR) algorithms have now achieved highly satisfactory evaluation and visualization results on synthetic datasets. However, in some practical applications, especially when restoring some real-world low-resolution (LR) photos, the limitation and unicity of the most commonly used bicubic down-sampling kernel often lead to significant performance degradation of models trained under ideal conditions. Thus, we first propose a kernel augmentation (KA) strategy based on generative adversarial networks (GANs) to improve the generalization ability and robustness of current SISR models. Then, we intend to reconstruct the stochastic variation (SV) features that are widely present in natural images to obtain a more realistic feature representation. In the end, extensive experiments demonstrate the feasibility and effectiveness of our approach in dealing with real-world SISR problems." @default.
- W4308235786 created "2022-11-09" @default.
- W4308235786 creator A5028235866 @default.
- W4308235786 creator A5036242008 @default.
- W4308235786 creator A5087695610 @default.
- W4308235786 creator A5088821301 @default.
- W4308235786 date "2022-10-16" @default.
- W4308235786 modified "2023-10-12" @default.
- W4308235786 title "Real-World Image Super-Resolution Via Kernel Augmentation And Stochastic Variation" @default.
- W4308235786 cites W1973788353 @default.
- W4308235786 cites W2102166818 @default.
- W4308235786 cites W2167191464 @default.
- W4308235786 cites W2474628748 @default.
- W4308235786 cites W2565312867 @default.
- W4308235786 cites W2607202125 @default.
- W4308235786 cites W2739757502 @default.
- W4308235786 cites W2741137940 @default.
- W4308235786 cites W2932253358 @default.
- W4308235786 cites W2943960148 @default.
- W4308235786 cites W2949695917 @default.
- W4308235786 cites W2962770929 @default.
- W4308235786 cites W2962785568 @default.
- W4308235786 cites W2962793481 @default.
- W4308235786 cites W2962814024 @default.
- W4308235786 cites W2963073614 @default.
- W4308235786 cites W2963470893 @default.
- W4308235786 cites W2963704386 @default.
- W4308235786 cites W2963774720 @default.
- W4308235786 cites W2964277374 @default.
- W4308235786 cites W2983339877 @default.
- W4308235786 cites W2987150909 @default.
- W4308235786 cites W3011456574 @default.
- W4308235786 cites W3034785019 @default.
- W4308235786 doi "https://doi.org/10.1109/icip46576.2022.9897540" @default.
- W4308235786 hasPublicationYear "2022" @default.
- W4308235786 type Work @default.
- W4308235786 citedByCount "0" @default.
- W4308235786 crossrefType "proceedings-article" @default.
- W4308235786 hasAuthorship W4308235786A5028235866 @default.
- W4308235786 hasAuthorship W4308235786A5036242008 @default.
- W4308235786 hasAuthorship W4308235786A5087695610 @default.
- W4308235786 hasAuthorship W4308235786A5088821301 @default.
- W4308235786 hasConcept C104317684 @default.
- W4308235786 hasConcept C105795698 @default.
- W4308235786 hasConcept C11413529 @default.
- W4308235786 hasConcept C114614502 @default.
- W4308235786 hasConcept C134306372 @default.
- W4308235786 hasConcept C138885662 @default.
- W4308235786 hasConcept C153180895 @default.
- W4308235786 hasConcept C154945302 @default.
- W4308235786 hasConcept C171836373 @default.
- W4308235786 hasConcept C177148314 @default.
- W4308235786 hasConcept C185429906 @default.
- W4308235786 hasConcept C185592680 @default.
- W4308235786 hasConcept C2776401178 @default.
- W4308235786 hasConcept C33923547 @default.
- W4308235786 hasConcept C36464697 @default.
- W4308235786 hasConcept C41008148 @default.
- W4308235786 hasConcept C41895202 @default.
- W4308235786 hasConcept C49608258 @default.
- W4308235786 hasConcept C55493867 @default.
- W4308235786 hasConcept C63479239 @default.
- W4308235786 hasConcept C71134354 @default.
- W4308235786 hasConcept C74193536 @default.
- W4308235786 hasConceptScore W4308235786C104317684 @default.
- W4308235786 hasConceptScore W4308235786C105795698 @default.
- W4308235786 hasConceptScore W4308235786C11413529 @default.
- W4308235786 hasConceptScore W4308235786C114614502 @default.
- W4308235786 hasConceptScore W4308235786C134306372 @default.
- W4308235786 hasConceptScore W4308235786C138885662 @default.
- W4308235786 hasConceptScore W4308235786C153180895 @default.
- W4308235786 hasConceptScore W4308235786C154945302 @default.
- W4308235786 hasConceptScore W4308235786C171836373 @default.
- W4308235786 hasConceptScore W4308235786C177148314 @default.
- W4308235786 hasConceptScore W4308235786C185429906 @default.
- W4308235786 hasConceptScore W4308235786C185592680 @default.
- W4308235786 hasConceptScore W4308235786C2776401178 @default.
- W4308235786 hasConceptScore W4308235786C33923547 @default.
- W4308235786 hasConceptScore W4308235786C36464697 @default.
- W4308235786 hasConceptScore W4308235786C41008148 @default.
- W4308235786 hasConceptScore W4308235786C41895202 @default.
- W4308235786 hasConceptScore W4308235786C49608258 @default.
- W4308235786 hasConceptScore W4308235786C55493867 @default.
- W4308235786 hasConceptScore W4308235786C63479239 @default.
- W4308235786 hasConceptScore W4308235786C71134354 @default.
- W4308235786 hasConceptScore W4308235786C74193536 @default.
- W4308235786 hasFunder F4320321001 @default.
- W4308235786 hasLocation W43082357861 @default.
- W4308235786 hasOpenAccess W4308235786 @default.
- W4308235786 hasPrimaryLocation W43082357861 @default.
- W4308235786 hasRelatedWork W2076520961 @default.
- W4308235786 hasRelatedWork W2110459882 @default.
- W4308235786 hasRelatedWork W2147735993 @default.
- W4308235786 hasRelatedWork W2382607599 @default.
- W4308235786 hasRelatedWork W2546942002 @default.
- W4308235786 hasRelatedWork W2970216048 @default.
- W4308235786 hasRelatedWork W2982870274 @default.
- W4308235786 hasRelatedWork W3023581765 @default.
- W4308235786 hasRelatedWork W3030380585 @default.
- W4308235786 hasRelatedWork W4206530213 @default.