Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308236032> ?p ?o ?g. }
- W4308236032 abstract "Compared to standard deep convolutional neural networks (CNN) which include a global average pooling operator, second-order neural networks have a global covariance pooling operator which allows to capture richer statistics of CNN features. They have been shown to improve representation and generalization abilities. However, this covariance pooling is performed only on the deepest CNN feature maps. To benefit from different levels of abstraction, we propose to extend these models by using a multi-layer approach. In addition, to obtain better predictive performance, an end-to-end ensemble learning architecture is proposed. Experiments are conducted on four datasets and have confirmed the potential of the proposed model for various image processing applications such as remote sensing scene classification, indoor scene recognition and texture classification." @default.
- W4308236032 created "2022-11-09" @default.
- W4308236032 creator A5000395252 @default.
- W4308236032 creator A5008569115 @default.
- W4308236032 creator A5030416500 @default.
- W4308236032 creator A5037554238 @default.
- W4308236032 creator A5042761955 @default.
- W4308236032 creator A5084906943 @default.
- W4308236032 date "2022-10-16" @default.
- W4308236032 modified "2023-10-14" @default.
- W4308236032 title "Deep Ensemble Learning Model Based on Covariance Pooling of Multi-Layer CNN Features" @default.
- W4308236032 cites W1980038761 @default.
- W4308236032 cites W2047643928 @default.
- W4308236032 cites W2112759033 @default.
- W4308236032 cites W2115629999 @default.
- W4308236032 cites W2152161678 @default.
- W4308236032 cites W2204257188 @default.
- W4308236032 cites W2517500902 @default.
- W4308236032 cites W2521616506 @default.
- W4308236032 cites W2762769350 @default.
- W4308236032 cites W2780838211 @default.
- W4308236032 cites W2829067510 @default.
- W4308236032 cites W2911964244 @default.
- W4308236032 cites W2962217138 @default.
- W4308236032 cites W2962858109 @default.
- W4308236032 cites W2963363102 @default.
- W4308236032 cites W2963550079 @default.
- W4308236032 cites W2964231884 @default.
- W4308236032 cites W2984956438 @default.
- W4308236032 cites W3093685377 @default.
- W4308236032 cites W3105577662 @default.
- W4308236032 doi "https://doi.org/10.1109/icip46576.2022.9897868" @default.
- W4308236032 hasPublicationYear "2022" @default.
- W4308236032 type Work @default.
- W4308236032 citedByCount "0" @default.
- W4308236032 crossrefType "proceedings-article" @default.
- W4308236032 hasAuthorship W4308236032A5000395252 @default.
- W4308236032 hasAuthorship W4308236032A5008569115 @default.
- W4308236032 hasAuthorship W4308236032A5030416500 @default.
- W4308236032 hasAuthorship W4308236032A5037554238 @default.
- W4308236032 hasAuthorship W4308236032A5042761955 @default.
- W4308236032 hasAuthorship W4308236032A5084906943 @default.
- W4308236032 hasConcept C105795698 @default.
- W4308236032 hasConcept C108583219 @default.
- W4308236032 hasConcept C111472728 @default.
- W4308236032 hasConcept C115961682 @default.
- W4308236032 hasConcept C119857082 @default.
- W4308236032 hasConcept C124304363 @default.
- W4308236032 hasConcept C134306372 @default.
- W4308236032 hasConcept C138885662 @default.
- W4308236032 hasConcept C153180895 @default.
- W4308236032 hasConcept C154945302 @default.
- W4308236032 hasConcept C177148314 @default.
- W4308236032 hasConcept C17744445 @default.
- W4308236032 hasConcept C178650346 @default.
- W4308236032 hasConcept C178790620 @default.
- W4308236032 hasConcept C185592680 @default.
- W4308236032 hasConcept C199539241 @default.
- W4308236032 hasConcept C2776359362 @default.
- W4308236032 hasConcept C2776401178 @default.
- W4308236032 hasConcept C2779227376 @default.
- W4308236032 hasConcept C33923547 @default.
- W4308236032 hasConcept C41008148 @default.
- W4308236032 hasConcept C41895202 @default.
- W4308236032 hasConcept C45942800 @default.
- W4308236032 hasConcept C59404180 @default.
- W4308236032 hasConcept C70437156 @default.
- W4308236032 hasConcept C75294576 @default.
- W4308236032 hasConcept C81363708 @default.
- W4308236032 hasConcept C94625758 @default.
- W4308236032 hasConceptScore W4308236032C105795698 @default.
- W4308236032 hasConceptScore W4308236032C108583219 @default.
- W4308236032 hasConceptScore W4308236032C111472728 @default.
- W4308236032 hasConceptScore W4308236032C115961682 @default.
- W4308236032 hasConceptScore W4308236032C119857082 @default.
- W4308236032 hasConceptScore W4308236032C124304363 @default.
- W4308236032 hasConceptScore W4308236032C134306372 @default.
- W4308236032 hasConceptScore W4308236032C138885662 @default.
- W4308236032 hasConceptScore W4308236032C153180895 @default.
- W4308236032 hasConceptScore W4308236032C154945302 @default.
- W4308236032 hasConceptScore W4308236032C177148314 @default.
- W4308236032 hasConceptScore W4308236032C17744445 @default.
- W4308236032 hasConceptScore W4308236032C178650346 @default.
- W4308236032 hasConceptScore W4308236032C178790620 @default.
- W4308236032 hasConceptScore W4308236032C185592680 @default.
- W4308236032 hasConceptScore W4308236032C199539241 @default.
- W4308236032 hasConceptScore W4308236032C2776359362 @default.
- W4308236032 hasConceptScore W4308236032C2776401178 @default.
- W4308236032 hasConceptScore W4308236032C2779227376 @default.
- W4308236032 hasConceptScore W4308236032C33923547 @default.
- W4308236032 hasConceptScore W4308236032C41008148 @default.
- W4308236032 hasConceptScore W4308236032C41895202 @default.
- W4308236032 hasConceptScore W4308236032C45942800 @default.
- W4308236032 hasConceptScore W4308236032C59404180 @default.
- W4308236032 hasConceptScore W4308236032C70437156 @default.
- W4308236032 hasConceptScore W4308236032C75294576 @default.
- W4308236032 hasConceptScore W4308236032C81363708 @default.
- W4308236032 hasConceptScore W4308236032C94625758 @default.
- W4308236032 hasLocation W43082360321 @default.
- W4308236032 hasOpenAccess W4308236032 @default.