Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308237172> ?p ?o ?g. }
- W4308237172 abstract "Traditional fusion approaches and most deep learning-based methods usually generate the intermediate decision map, resulting in detail loss of source images or fusion results. In this work, to enhance the detailed features and structured information from source images, we propose a dual cascade attention network (DCAN) to obtain a more informative fusion image for PET and MRI images. In our approach, channel attention is employed to improve the ability of features representation and spatial attention can highlight informative regions in the proposed fusion network. Additionally, channel and spatial attention are sequential arrangement in channel-first. Moreover, to achieve good performance in the procedure of feature extraction and image reconstruction, two-stage training strategy is adopted to train our fusion model. Experimental results demonstrate that the proposed approach achieves remarkable performance for PET and MRI images fusion." @default.
- W4308237172 created "2022-11-09" @default.
- W4308237172 creator A5015463546 @default.
- W4308237172 creator A5017842484 @default.
- W4308237172 creator A5026412163 @default.
- W4308237172 creator A5039105930 @default.
- W4308237172 creator A5054410967 @default.
- W4308237172 creator A5065484443 @default.
- W4308237172 date "2022-10-16" @default.
- W4308237172 modified "2023-10-14" @default.
- W4308237172 title "DCAN: A Dual Cascade Attention Network for Fusing Pet and MRI Images" @default.
- W4308237172 cites W1628236353 @default.
- W4308237172 cites W1997480692 @default.
- W4308237172 cites W2002285735 @default.
- W4308237172 cites W2020442368 @default.
- W4308237172 cites W2039465985 @default.
- W4308237172 cites W2094824638 @default.
- W4308237172 cites W2116702374 @default.
- W4308237172 cites W2532801510 @default.
- W4308237172 cites W2793890232 @default.
- W4308237172 cites W2808591023 @default.
- W4308237172 cites W2828601215 @default.
- W4308237172 cites W2963530785 @default.
- W4308237172 cites W2963787388 @default.
- W4308237172 cites W3105639468 @default.
- W4308237172 cites W4210287822 @default.
- W4308237172 cites W4224283557 @default.
- W4308237172 doi "https://doi.org/10.1109/icip46576.2022.9897637" @default.
- W4308237172 hasPublicationYear "2022" @default.
- W4308237172 type Work @default.
- W4308237172 citedByCount "0" @default.
- W4308237172 crossrefType "proceedings-article" @default.
- W4308237172 hasAuthorship W4308237172A5015463546 @default.
- W4308237172 hasAuthorship W4308237172A5017842484 @default.
- W4308237172 hasAuthorship W4308237172A5026412163 @default.
- W4308237172 hasAuthorship W4308237172A5039105930 @default.
- W4308237172 hasAuthorship W4308237172A5054410967 @default.
- W4308237172 hasAuthorship W4308237172A5065484443 @default.
- W4308237172 hasConcept C108583219 @default.
- W4308237172 hasConcept C115961682 @default.
- W4308237172 hasConcept C124952713 @default.
- W4308237172 hasConcept C127162648 @default.
- W4308237172 hasConcept C138885662 @default.
- W4308237172 hasConcept C142362112 @default.
- W4308237172 hasConcept C153180895 @default.
- W4308237172 hasConcept C154945302 @default.
- W4308237172 hasConcept C158525013 @default.
- W4308237172 hasConcept C17744445 @default.
- W4308237172 hasConcept C185592680 @default.
- W4308237172 hasConcept C199539241 @default.
- W4308237172 hasConcept C2776359362 @default.
- W4308237172 hasConcept C2776401178 @default.
- W4308237172 hasConcept C2780980858 @default.
- W4308237172 hasConcept C31258907 @default.
- W4308237172 hasConcept C31972630 @default.
- W4308237172 hasConcept C34146451 @default.
- W4308237172 hasConcept C41008148 @default.
- W4308237172 hasConcept C41895202 @default.
- W4308237172 hasConcept C43617362 @default.
- W4308237172 hasConcept C52622490 @default.
- W4308237172 hasConcept C69744172 @default.
- W4308237172 hasConcept C94625758 @default.
- W4308237172 hasConceptScore W4308237172C108583219 @default.
- W4308237172 hasConceptScore W4308237172C115961682 @default.
- W4308237172 hasConceptScore W4308237172C124952713 @default.
- W4308237172 hasConceptScore W4308237172C127162648 @default.
- W4308237172 hasConceptScore W4308237172C138885662 @default.
- W4308237172 hasConceptScore W4308237172C142362112 @default.
- W4308237172 hasConceptScore W4308237172C153180895 @default.
- W4308237172 hasConceptScore W4308237172C154945302 @default.
- W4308237172 hasConceptScore W4308237172C158525013 @default.
- W4308237172 hasConceptScore W4308237172C17744445 @default.
- W4308237172 hasConceptScore W4308237172C185592680 @default.
- W4308237172 hasConceptScore W4308237172C199539241 @default.
- W4308237172 hasConceptScore W4308237172C2776359362 @default.
- W4308237172 hasConceptScore W4308237172C2776401178 @default.
- W4308237172 hasConceptScore W4308237172C2780980858 @default.
- W4308237172 hasConceptScore W4308237172C31258907 @default.
- W4308237172 hasConceptScore W4308237172C31972630 @default.
- W4308237172 hasConceptScore W4308237172C34146451 @default.
- W4308237172 hasConceptScore W4308237172C41008148 @default.
- W4308237172 hasConceptScore W4308237172C41895202 @default.
- W4308237172 hasConceptScore W4308237172C43617362 @default.
- W4308237172 hasConceptScore W4308237172C52622490 @default.
- W4308237172 hasConceptScore W4308237172C69744172 @default.
- W4308237172 hasConceptScore W4308237172C94625758 @default.
- W4308237172 hasFunder F4320321001 @default.
- W4308237172 hasFunder F4320321543 @default.
- W4308237172 hasFunder F4320326186 @default.
- W4308237172 hasFunder F4320329543 @default.
- W4308237172 hasLocation W43082371721 @default.
- W4308237172 hasOpenAccess W4308237172 @default.
- W4308237172 hasPrimaryLocation W43082371721 @default.
- W4308237172 hasRelatedWork W1504288058 @default.
- W4308237172 hasRelatedWork W2331674254 @default.
- W4308237172 hasRelatedWork W2382607599 @default.
- W4308237172 hasRelatedWork W2419576664 @default.
- W4308237172 hasRelatedWork W2546942002 @default.
- W4308237172 hasRelatedWork W3007420330 @default.
- W4308237172 hasRelatedWork W4281689716 @default.