Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308239222> ?p ?o ?g. }
- W4308239222 endingPage "105979" @default.
- W4308239222 startingPage "105979" @default.
- W4308239222 abstract "Total electron content (TEC) is one of the important features used in studying of ionospheric properties. In seismo-ionospheric studies, variations/anomalies of the vertical total electron content over a seismic event are used to study the manifestation of lithospheric in the ionosphere. It is significant to design a robust TEC anomaly detection algorithm, which is capable of detecting non-spurious Seismo-induced TEC variations. In this paper, the long short term memory (LSTM) based auto-encoder network is presented for the detection of TEC anomalies recorded by GNSS receivers. The LSTM-auto-encoder is applied as a semi-supervised scheme to learn TEC responses in quiet solar and geomagnetic conditions. It then uses the learned TEC features to identify anomalies in a given TEC input data. The method is implemented to detect TEC anomalies recorded by three different GNSS-TEC receivers (ankr, ista, and tubi) in Türkiye. The model is also used to verify results from a recently published study on Mexico earthquake (magnitude 7.4). In each case, plausible results are obtained, and the relationship between detected anomalies with some lithosphere-atmosphere processes are discussed. The method highlights the significance/applications of AI in studying ionospheric variations." @default.
- W4308239222 created "2022-11-09" @default.
- W4308239222 creator A5018216488 @default.
- W4308239222 creator A5040392126 @default.
- W4308239222 date "2022-12-01" @default.
- W4308239222 modified "2023-10-18" @default.
- W4308239222 title "A semi-supervised total electron content anomaly detection method using LSTM-auto-encoder" @default.
- W4308239222 cites W1525431606 @default.
- W4308239222 cites W1587976434 @default.
- W4308239222 cites W1974424171 @default.
- W4308239222 cites W1979991277 @default.
- W4308239222 cites W1980547386 @default.
- W4308239222 cites W1984136602 @default.
- W4308239222 cites W1986155825 @default.
- W4308239222 cites W1993902716 @default.
- W4308239222 cites W2013828009 @default.
- W4308239222 cites W2025364712 @default.
- W4308239222 cites W2032498534 @default.
- W4308239222 cites W2035487274 @default.
- W4308239222 cites W2035925293 @default.
- W4308239222 cites W2045868367 @default.
- W4308239222 cites W2059036805 @default.
- W4308239222 cites W2068094984 @default.
- W4308239222 cites W2073075422 @default.
- W4308239222 cites W2086026065 @default.
- W4308239222 cites W2086068384 @default.
- W4308239222 cites W2091336310 @default.
- W4308239222 cites W2096806746 @default.
- W4308239222 cites W2131942447 @default.
- W4308239222 cites W2143305663 @default.
- W4308239222 cites W2162720847 @default.
- W4308239222 cites W2163545874 @default.
- W4308239222 cites W2194468103 @default.
- W4308239222 cites W2224257790 @default.
- W4308239222 cites W2325051295 @default.
- W4308239222 cites W2532189188 @default.
- W4308239222 cites W2560580816 @default.
- W4308239222 cites W2608316247 @default.
- W4308239222 cites W2613918663 @default.
- W4308239222 cites W2790680946 @default.
- W4308239222 cites W2791023882 @default.
- W4308239222 cites W2794582331 @default.
- W4308239222 cites W2796013264 @default.
- W4308239222 cites W2883108807 @default.
- W4308239222 cites W2887708646 @default.
- W4308239222 cites W2906805076 @default.
- W4308239222 cites W2908433648 @default.
- W4308239222 cites W2996381651 @default.
- W4308239222 cites W3006999206 @default.
- W4308239222 cites W3009690686 @default.
- W4308239222 cites W3010834488 @default.
- W4308239222 cites W3010952324 @default.
- W4308239222 cites W3012082538 @default.
- W4308239222 cites W3012270261 @default.
- W4308239222 cites W3021052705 @default.
- W4308239222 cites W3045568326 @default.
- W4308239222 cites W3085175345 @default.
- W4308239222 cites W3096809337 @default.
- W4308239222 cites W3098448671 @default.
- W4308239222 cites W3107249503 @default.
- W4308239222 cites W3135714820 @default.
- W4308239222 cites W3146502493 @default.
- W4308239222 cites W3151864675 @default.
- W4308239222 cites W3172385774 @default.
- W4308239222 cites W4225261029 @default.
- W4308239222 cites W4242970759 @default.
- W4308239222 cites W4285097092 @default.
- W4308239222 doi "https://doi.org/10.1016/j.jastp.2022.105979" @default.
- W4308239222 hasPublicationYear "2022" @default.
- W4308239222 type Work @default.
- W4308239222 citedByCount "1" @default.
- W4308239222 countsByYear W43082392222023 @default.
- W4308239222 crossrefType "journal-article" @default.
- W4308239222 hasAuthorship W4308239222A5018216488 @default.
- W4308239222 hasAuthorship W4308239222A5040392126 @default.
- W4308239222 hasConcept C115260700 @default.
- W4308239222 hasConcept C116403925 @default.
- W4308239222 hasConcept C121332964 @default.
- W4308239222 hasConcept C127313418 @default.
- W4308239222 hasConcept C12997251 @default.
- W4308239222 hasConcept C13280743 @default.
- W4308239222 hasConcept C14279187 @default.
- W4308239222 hasConcept C165391973 @default.
- W4308239222 hasConcept C176379880 @default.
- W4308239222 hasConcept C199635899 @default.
- W4308239222 hasConcept C26873012 @default.
- W4308239222 hasConcept C41008148 @default.
- W4308239222 hasConcept C60229501 @default.
- W4308239222 hasConcept C62520636 @default.
- W4308239222 hasConcept C62649853 @default.
- W4308239222 hasConcept C76155785 @default.
- W4308239222 hasConcept C8058405 @default.
- W4308239222 hasConceptScore W4308239222C115260700 @default.
- W4308239222 hasConceptScore W4308239222C116403925 @default.
- W4308239222 hasConceptScore W4308239222C121332964 @default.
- W4308239222 hasConceptScore W4308239222C127313418 @default.
- W4308239222 hasConceptScore W4308239222C12997251 @default.
- W4308239222 hasConceptScore W4308239222C13280743 @default.