Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308245897> ?p ?o ?g. }
Showing items 1 to 58 of
58
with 100 items per page.
- W4308245897 abstract "Infinite Gray code has been introduced by Tsuiki as a redundancy-free representation of the reals. In applications the signed digit representation is mostly used which has maximal redundancy. Tsuiki presented a functional program converting signed digit code into infinite Gray code. Moreover, he showed that infinite Gray code can effectively be converted into signed digit code, but the program needs to have some non-deterministic features (see also H. Tsuiki, K. Sugihara, Streams with a bottom in functional languages). Berger and Tsuiki reproved the result in a system of formal first-order intuitionistic logic extended by inductive and co-inductive definitions, as well as some new logical connectives capturing concurrent behaviour. The programs extracted from the proofs are exactly the ones given by Tsuiki. In order to do so, co-inductive predicates $bS$ and $bG$ are defined and the inclusion $bS subseteq bG$ is derived. For the converse inclusion the new logical connectives are used to introduce a concurrent version $S_{2}$ of $S$ and $bG subseteq bS_{2}$ is shown. What one is looking for, however, is an equivalence proof of the involved concepts. One of the main aims of the present paper is to close the gap. A concurrent version $bG^{*}$ of $bG$ and a modification $bS^{*}$ of $bS_{2}$ are presented such that $bS^{*} = bG^{*}$. A crucial tool in U. Berger, H. Tsuiki, Intuitionistic fixed point logic is a formulation of the Archimedean property of the real numbers as an induction principle. We introduce a concurrent version of this principle which allows us to prove that $bS^{*}$ and $bG^{*}$ coincide. A further central contribution is the extension of the above results to the hyperspace of non-empty compact subsets of the reals." @default.
- W4308245897 created "2022-11-09" @default.
- W4308245897 creator A5005352054 @default.
- W4308245897 creator A5008539841 @default.
- W4308245897 date "2021-05-29" @default.
- W4308245897 modified "2023-10-18" @default.
- W4308245897 title "Computing with Infinite Objects: the Gray Code Case" @default.
- W4308245897 doi "https://doi.org/10.48550/arxiv.2105.14261" @default.
- W4308245897 hasPublicationYear "2021" @default.
- W4308245897 type Work @default.
- W4308245897 citedByCount "0" @default.
- W4308245897 crossrefType "posted-content" @default.
- W4308245897 hasAuthorship W4308245897A5005352054 @default.
- W4308245897 hasAuthorship W4308245897A5008539841 @default.
- W4308245897 hasBestOaLocation W43082458971 @default.
- W4308245897 hasConcept C108710211 @default.
- W4308245897 hasConcept C11413529 @default.
- W4308245897 hasConcept C118615104 @default.
- W4308245897 hasConcept C177264268 @default.
- W4308245897 hasConcept C199360897 @default.
- W4308245897 hasConcept C203265346 @default.
- W4308245897 hasConcept C2524010 @default.
- W4308245897 hasConcept C2776760102 @default.
- W4308245897 hasConcept C2780069185 @default.
- W4308245897 hasConcept C33923547 @default.
- W4308245897 hasConcept C41008148 @default.
- W4308245897 hasConcept C80444323 @default.
- W4308245897 hasConcept C94375191 @default.
- W4308245897 hasConceptScore W4308245897C108710211 @default.
- W4308245897 hasConceptScore W4308245897C11413529 @default.
- W4308245897 hasConceptScore W4308245897C118615104 @default.
- W4308245897 hasConceptScore W4308245897C177264268 @default.
- W4308245897 hasConceptScore W4308245897C199360897 @default.
- W4308245897 hasConceptScore W4308245897C203265346 @default.
- W4308245897 hasConceptScore W4308245897C2524010 @default.
- W4308245897 hasConceptScore W4308245897C2776760102 @default.
- W4308245897 hasConceptScore W4308245897C2780069185 @default.
- W4308245897 hasConceptScore W4308245897C33923547 @default.
- W4308245897 hasConceptScore W4308245897C41008148 @default.
- W4308245897 hasConceptScore W4308245897C80444323 @default.
- W4308245897 hasConceptScore W4308245897C94375191 @default.
- W4308245897 hasLocation W43082458971 @default.
- W4308245897 hasLocation W43082458972 @default.
- W4308245897 hasOpenAccess W4308245897 @default.
- W4308245897 hasPrimaryLocation W43082458971 @default.
- W4308245897 hasRelatedWork W1501252054 @default.
- W4308245897 hasRelatedWork W1537343097 @default.
- W4308245897 hasRelatedWork W160320105 @default.
- W4308245897 hasRelatedWork W2015780695 @default.
- W4308245897 hasRelatedWork W2023237006 @default.
- W4308245897 hasRelatedWork W2167433695 @default.
- W4308245897 hasRelatedWork W2384847609 @default.
- W4308245897 hasRelatedWork W4376271928 @default.
- W4308245897 hasRelatedWork W787793384 @default.
- W4308245897 hasRelatedWork W90993393 @default.
- W4308245897 isParatext "false" @default.
- W4308245897 isRetracted "false" @default.
- W4308245897 workType "article" @default.