Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308255514> ?p ?o ?g. }
- W4308255514 endingPage "9434" @default.
- W4308255514 startingPage "9426" @default.
- W4308255514 abstract "Motivation is a powerful driver of learning and memory. Functional MRI studies show that interactions among the dopaminergic midbrain substantia nigra/ventral tegmental area (SN/VTA), hippocampus, and nucleus accumbens (NAc) are critical for motivated memory encoding. However, it is not known whether these effects are transient and purely functional, or whether individual differences in the structure of this circuit underlie motivated memory encoding. To quantify individual differences in structure, diffusion-weighted MRI and probabilistic tractography were used to quantify SN/VTA–striatum and SN/VTA–hippocampus pathways associated with motivated memory encoding in humans. Male and female participants completed a motivated source memory paradigm. During encoding, words were randomly assigned to one of three conditions, reward ($1.00), control ($0.00), or punishment (−$1.00). During retrieval, participants were asked to retrieve item and source information of the previously studied words and were rewarded or penalized according to their performance. Source memory for words assigned to both reward and punishment conditions was greater than those for control words, but there were no differences in item memory based on value. Anatomically, probabilistic tractography results revealed a heterogeneous, topological arrangement of the SN/VTA. Tract density measures of SN/VTA–hippocampus pathways were positively correlated with individual differences in reward-and-punishment-modulated memory performance, whereas density of SN/VTA–striatum pathways showed no association. This novel finding suggests that pathways emerging from the human SV/VTA are anatomically separable and functionally heterogeneous. Individual differences in structural connectivity of the dopaminergic hippocampus–VTA loop are selectively associated with motivated memory encoding. SIGNIFICANCE STATEMENT Functional MRI studies show that interactions among the SN/VTA, hippocampus, and NAc are critical for motivated memory encoding. This has led to competing theories that posit either SN/VTA–NAc reward prediction errors or SN/VTA–hippocampus signals underlie motivated memory encoding. Additionally, it is not known whether these effects are transient and purely functional or whether individual differences in the structure of these circuits underlie motivated memory encoding. Using diffusion-weighted MRI and probabilistic tractography, we show that tract density measures of SN/VTA–hippocampus pathways are positively correlated with motivated memory performance, whereas density of SN/VTA–striatum pathways show no association. This finding suggests that anatomic individual differences of the dopaminergic hippocampus–VTA loop are selectively associated with motivated memory encoding." @default.
- W4308255514 created "2022-11-09" @default.
- W4308255514 creator A5015947275 @default.
- W4308255514 creator A5018432314 @default.
- W4308255514 creator A5024306353 @default.
- W4308255514 creator A5055220979 @default.
- W4308255514 creator A5072697564 @default.
- W4308255514 date "2022-11-04" @default.
- W4308255514 modified "2023-10-18" @default.
- W4308255514 title "Midbrain–Hippocampus Structural Connectivity Selectively Predicts Motivated Memory Encoding" @default.
- W4308255514 cites W1970992086 @default.
- W4308255514 cites W1972160777 @default.
- W4308255514 cites W1972742627 @default.
- W4308255514 cites W1978615193 @default.
- W4308255514 cites W1979619871 @default.
- W4308255514 cites W1997065612 @default.
- W4308255514 cites W2000133863 @default.
- W4308255514 cites W2001943455 @default.
- W4308255514 cites W2013107161 @default.
- W4308255514 cites W2013438045 @default.
- W4308255514 cites W2019338564 @default.
- W4308255514 cites W2025693086 @default.
- W4308255514 cites W2035883572 @default.
- W4308255514 cites W2044546476 @default.
- W4308255514 cites W2044751919 @default.
- W4308255514 cites W2051407715 @default.
- W4308255514 cites W2060322330 @default.
- W4308255514 cites W206363350 @default.
- W4308255514 cites W2064612160 @default.
- W4308255514 cites W2071189762 @default.
- W4308255514 cites W2076663297 @default.
- W4308255514 cites W2089858495 @default.
- W4308255514 cites W2093914312 @default.
- W4308255514 cites W2094090855 @default.
- W4308255514 cites W2106347874 @default.
- W4308255514 cites W2109059823 @default.
- W4308255514 cites W2109738307 @default.
- W4308255514 cites W2111873046 @default.
- W4308255514 cites W2115591287 @default.
- W4308255514 cites W2116847631 @default.
- W4308255514 cites W2117726420 @default.
- W4308255514 cites W2121007598 @default.
- W4308255514 cites W2123081065 @default.
- W4308255514 cites W2127820682 @default.
- W4308255514 cites W2128472904 @default.
- W4308255514 cites W2129503911 @default.
- W4308255514 cites W2132073746 @default.
- W4308255514 cites W2142059961 @default.
- W4308255514 cites W2142281591 @default.
- W4308255514 cites W2157088567 @default.
- W4308255514 cites W2159010963 @default.
- W4308255514 cites W2167869633 @default.
- W4308255514 cites W2168456060 @default.
- W4308255514 cites W2170110106 @default.
- W4308255514 cites W2171298950 @default.
- W4308255514 cites W2171800484 @default.
- W4308255514 cites W2569338683 @default.
- W4308255514 cites W2782524496 @default.
- W4308255514 cites W2883121292 @default.
- W4308255514 cites W2908613269 @default.
- W4308255514 cites W2943754376 @default.
- W4308255514 cites W2952938424 @default.
- W4308255514 cites W2980842652 @default.
- W4308255514 cites W3012260011 @default.
- W4308255514 cites W3021269180 @default.
- W4308255514 cites W3087322336 @default.
- W4308255514 cites W3114377132 @default.
- W4308255514 cites W3123331766 @default.
- W4308255514 cites W3127364825 @default.
- W4308255514 cites W3164748720 @default.
- W4308255514 cites W3204721582 @default.
- W4308255514 cites W4241221200 @default.
- W4308255514 doi "https://doi.org/10.1523/jneurosci.0945-22.2022" @default.
- W4308255514 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36332978" @default.
- W4308255514 hasPublicationYear "2022" @default.
- W4308255514 type Work @default.
- W4308255514 citedByCount "2" @default.
- W4308255514 countsByYear W43082555142023 @default.
- W4308255514 crossrefType "journal-article" @default.
- W4308255514 hasAuthorship W4308255514A5015947275 @default.
- W4308255514 hasAuthorship W4308255514A5018432314 @default.
- W4308255514 hasAuthorship W4308255514A5024306353 @default.
- W4308255514 hasAuthorship W4308255514A5055220979 @default.
- W4308255514 hasAuthorship W4308255514A5072697564 @default.
- W4308255514 hasBestOaLocation W43082555141 @default.
- W4308255514 hasConcept C137183658 @default.
- W4308255514 hasConcept C15744967 @default.
- W4308255514 hasConcept C169760540 @default.
- W4308255514 hasConcept C2776552330 @default.
- W4308255514 hasConcept C2780062018 @default.
- W4308255514 hasConcept C2780938664 @default.
- W4308255514 hasConcept C2780948874 @default.
- W4308255514 hasConcept C2781161787 @default.
- W4308255514 hasConcept C513476851 @default.
- W4308255514 hasConcept C529278444 @default.
- W4308255514 hasConcept C552161191 @default.
- W4308255514 hasConceptScore W4308255514C137183658 @default.
- W4308255514 hasConceptScore W4308255514C15744967 @default.