Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308262314> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W4308262314 endingPage "769" @default.
- W4308262314 startingPage "757" @default.
- W4308262314 abstract "AbstractDifferent cervical pap smear cell categorization schemes have recently been presented, the majority of which were binary classifications of normal and abnormal cells. This paper presents the findings of a comprehensive investigation on machine learning and deep learning algorithms for binary and multi-class classification on pap smear images from the Herlev dataset. There are 917 photos in this collection, divided into seven normal and pathological categories. The Google Colab platform was used to generate models utilizing all of the techniques using scikit learn and the keras library from TensorFlow. To begin, several repetitions of processes such as feature importance selection, data normalization, standardization, PCA, T-SNE, and others have been imposed on models such as SVM and XGBoost in this work for machine learning approaches. Second, it was demonstrated in this work that a transfer learning-based CNN model from deep learning can outperform machine learning models in terms of binary and multi-class classifications. Furthermore, it was discovered in this work how computationally time efficient it is to apply a transfer learning model, which required roughly 25 min for 100 epochs. Finally, with several iterations of processes and outcomes, this work demonstrates that given enough data for a multi-class pap smear image classification system, the transfer learning CNN model has a higher potential to get the best results than the machine learning models used.KeywordsPap smear imagesCNNMachine learningTransfer learning" @default.
- W4308262314 created "2022-11-09" @default.
- W4308262314 creator A5032216377 @default.
- W4308262314 creator A5059796991 @default.
- W4308262314 date "2022-11-06" @default.
- W4308262314 modified "2023-10-16" @default.
- W4308262314 title "Classification of Pap Smear Image of Cervix Cell Using Machine Learning Techniques and Transfer Learning-Based Convolutional Neural Network Architecture and Scrutinizing Their Performances" @default.
- W4308262314 cites W1618587350 @default.
- W4308262314 cites W1849603072 @default.
- W4308262314 cites W2076242843 @default.
- W4308262314 cites W2164117960 @default.
- W4308262314 cites W2478171751 @default.
- W4308262314 cites W2562498401 @default.
- W4308262314 cites W2770594817 @default.
- W4308262314 cites W2772434162 @default.
- W4308262314 cites W2896842408 @default.
- W4308262314 cites W2944361240 @default.
- W4308262314 cites W2958508245 @default.
- W4308262314 cites W3102737931 @default.
- W4308262314 cites W4239510810 @default.
- W4308262314 cites W2116910500 @default.
- W4308262314 doi "https://doi.org/10.1007/978-981-19-5224-1_75" @default.
- W4308262314 hasPublicationYear "2022" @default.
- W4308262314 type Work @default.
- W4308262314 citedByCount "0" @default.
- W4308262314 crossrefType "book-chapter" @default.
- W4308262314 hasAuthorship W4308262314A5032216377 @default.
- W4308262314 hasAuthorship W4308262314A5059796991 @default.
- W4308262314 hasConcept C108583219 @default.
- W4308262314 hasConcept C111919701 @default.
- W4308262314 hasConcept C119857082 @default.
- W4308262314 hasConcept C12267149 @default.
- W4308262314 hasConcept C136886441 @default.
- W4308262314 hasConcept C144024400 @default.
- W4308262314 hasConcept C148483581 @default.
- W4308262314 hasConcept C150899416 @default.
- W4308262314 hasConcept C153180895 @default.
- W4308262314 hasConcept C154945302 @default.
- W4308262314 hasConcept C188087704 @default.
- W4308262314 hasConcept C19165224 @default.
- W4308262314 hasConcept C33923547 @default.
- W4308262314 hasConcept C41008148 @default.
- W4308262314 hasConcept C48372109 @default.
- W4308262314 hasConcept C66905080 @default.
- W4308262314 hasConcept C81363708 @default.
- W4308262314 hasConcept C94124525 @default.
- W4308262314 hasConcept C94375191 @default.
- W4308262314 hasConceptScore W4308262314C108583219 @default.
- W4308262314 hasConceptScore W4308262314C111919701 @default.
- W4308262314 hasConceptScore W4308262314C119857082 @default.
- W4308262314 hasConceptScore W4308262314C12267149 @default.
- W4308262314 hasConceptScore W4308262314C136886441 @default.
- W4308262314 hasConceptScore W4308262314C144024400 @default.
- W4308262314 hasConceptScore W4308262314C148483581 @default.
- W4308262314 hasConceptScore W4308262314C150899416 @default.
- W4308262314 hasConceptScore W4308262314C153180895 @default.
- W4308262314 hasConceptScore W4308262314C154945302 @default.
- W4308262314 hasConceptScore W4308262314C188087704 @default.
- W4308262314 hasConceptScore W4308262314C19165224 @default.
- W4308262314 hasConceptScore W4308262314C33923547 @default.
- W4308262314 hasConceptScore W4308262314C41008148 @default.
- W4308262314 hasConceptScore W4308262314C48372109 @default.
- W4308262314 hasConceptScore W4308262314C66905080 @default.
- W4308262314 hasConceptScore W4308262314C81363708 @default.
- W4308262314 hasConceptScore W4308262314C94124525 @default.
- W4308262314 hasConceptScore W4308262314C94375191 @default.
- W4308262314 hasLocation W43082623141 @default.
- W4308262314 hasOpenAccess W4308262314 @default.
- W4308262314 hasPrimaryLocation W43082623141 @default.
- W4308262314 hasRelatedWork W2738221750 @default.
- W4308262314 hasRelatedWork W2943641103 @default.
- W4308262314 hasRelatedWork W3018421652 @default.
- W4308262314 hasRelatedWork W3021430260 @default.
- W4308262314 hasRelatedWork W3091976719 @default.
- W4308262314 hasRelatedWork W3166467183 @default.
- W4308262314 hasRelatedWork W3173182854 @default.
- W4308262314 hasRelatedWork W3192840557 @default.
- W4308262314 hasRelatedWork W3212798775 @default.
- W4308262314 hasRelatedWork W2345184372 @default.
- W4308262314 isParatext "false" @default.
- W4308262314 isRetracted "false" @default.
- W4308262314 workType "book-chapter" @default.