Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308266054> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W4308266054 abstract "In discrete dynamical system $(X, f)$ where $X$ is a topological space and $f in C(X,X)$, three notions of distributional chaos were defined. They were denoted by $DC1, DC2$ and $DC3$. For interval systems such three notions coincide and they will be denoted by DC-chaos. Generally speaking we have $DC1 subseteq DC2 subseteq DC3$-chaos. We wonder if it is possible that chaos can concentrate in some points and develop a local idea of the distributional chaos. Answering to this question, in [12] is introduced the new notion of $DCi$-points for $i = 1,2,3$. Such special points are those in which DC-chaos of different types concentrate. Also in [12] it is proved that if $f$ is continuous interval map with positive topological entropy, then there is at least one DC1-point in the system. In this paper it is proved that in the symbolic space $(Sigma, sigma) $ where $sigma$ is the shift map, every point of $Sigma$ is a DC1-point. This result is necessary to prove one of the main results of the paper. If $h(f) > 0 $ for an interval system, then it has an uncountable set of DC1-points and moreover the set can be chosen perfect. In greater dimensions than one, we deal with triangular systems on $I^{2}$. In this case the relationship between topological entropy and different cases of distributional chaos is not clearly understood and several different results are possible. In the paper we use an example of $F$ given by Kolyada in [9] to prove that the corresponding two dimensional system $(I^{2}, F)$ has positive topological entropy but without containing DC2-points, proving that there is no concentration of DC2-chaos" @default.
- W4308266054 created "2022-11-09" @default.
- W4308266054 creator A5016391599 @default.
- W4308266054 creator A5042540305 @default.
- W4308266054 date "2021-12-02" @default.
- W4308266054 modified "2023-09-26" @default.
- W4308266054 title "Local distributional chaos" @default.
- W4308266054 doi "https://doi.org/10.48550/arxiv.2112.01457" @default.
- W4308266054 hasPublicationYear "2021" @default.
- W4308266054 type Work @default.
- W4308266054 citedByCount "0" @default.
- W4308266054 crossrefType "posted-content" @default.
- W4308266054 hasAuthorship W4308266054A5016391599 @default.
- W4308266054 hasAuthorship W4308266054A5042540305 @default.
- W4308266054 hasBestOaLocation W43082660541 @default.
- W4308266054 hasConcept C106301342 @default.
- W4308266054 hasConcept C110729354 @default.
- W4308266054 hasConcept C111919701 @default.
- W4308266054 hasConcept C114614502 @default.
- W4308266054 hasConcept C118615104 @default.
- W4308266054 hasConcept C121332964 @default.
- W4308266054 hasConcept C142399903 @default.
- W4308266054 hasConcept C16101541 @default.
- W4308266054 hasConcept C202444582 @default.
- W4308266054 hasConcept C2778049214 @default.
- W4308266054 hasConcept C2778067643 @default.
- W4308266054 hasConcept C2778572836 @default.
- W4308266054 hasConcept C2779374083 @default.
- W4308266054 hasConcept C2780350623 @default.
- W4308266054 hasConcept C2983793180 @default.
- W4308266054 hasConcept C2991919592 @default.
- W4308266054 hasConcept C33923547 @default.
- W4308266054 hasConcept C38652104 @default.
- W4308266054 hasConcept C41008148 @default.
- W4308266054 hasConcept C62520636 @default.
- W4308266054 hasConcept C79379906 @default.
- W4308266054 hasConcept C81332173 @default.
- W4308266054 hasConceptScore W4308266054C106301342 @default.
- W4308266054 hasConceptScore W4308266054C110729354 @default.
- W4308266054 hasConceptScore W4308266054C111919701 @default.
- W4308266054 hasConceptScore W4308266054C114614502 @default.
- W4308266054 hasConceptScore W4308266054C118615104 @default.
- W4308266054 hasConceptScore W4308266054C121332964 @default.
- W4308266054 hasConceptScore W4308266054C142399903 @default.
- W4308266054 hasConceptScore W4308266054C16101541 @default.
- W4308266054 hasConceptScore W4308266054C202444582 @default.
- W4308266054 hasConceptScore W4308266054C2778049214 @default.
- W4308266054 hasConceptScore W4308266054C2778067643 @default.
- W4308266054 hasConceptScore W4308266054C2778572836 @default.
- W4308266054 hasConceptScore W4308266054C2779374083 @default.
- W4308266054 hasConceptScore W4308266054C2780350623 @default.
- W4308266054 hasConceptScore W4308266054C2983793180 @default.
- W4308266054 hasConceptScore W4308266054C2991919592 @default.
- W4308266054 hasConceptScore W4308266054C33923547 @default.
- W4308266054 hasConceptScore W4308266054C38652104 @default.
- W4308266054 hasConceptScore W4308266054C41008148 @default.
- W4308266054 hasConceptScore W4308266054C62520636 @default.
- W4308266054 hasConceptScore W4308266054C79379906 @default.
- W4308266054 hasConceptScore W4308266054C81332173 @default.
- W4308266054 hasLocation W43082660541 @default.
- W4308266054 hasLocation W43082660542 @default.
- W4308266054 hasOpenAccess W4308266054 @default.
- W4308266054 hasPrimaryLocation W43082660541 @default.
- W4308266054 hasRelatedWork W1963995324 @default.
- W4308266054 hasRelatedWork W1968445467 @default.
- W4308266054 hasRelatedWork W2037098918 @default.
- W4308266054 hasRelatedWork W2042690431 @default.
- W4308266054 hasRelatedWork W2091039398 @default.
- W4308266054 hasRelatedWork W2361776090 @default.
- W4308266054 hasRelatedWork W2392322914 @default.
- W4308266054 hasRelatedWork W2393660919 @default.
- W4308266054 hasRelatedWork W4226052427 @default.
- W4308266054 hasRelatedWork W4308266054 @default.
- W4308266054 isParatext "false" @default.
- W4308266054 isRetracted "false" @default.
- W4308266054 workType "article" @default.