Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308266156> ?p ?o ?g. }
- W4308266156 endingPage "105547" @default.
- W4308266156 startingPage "105547" @default.
- W4308266156 abstract "In modern industrial processes, the data-driven soft sensor technology has been widely used for the prediction of key quality variables. Due to the important of dynamics and nonlinearity in industrial process data, deep learning models like long short-term memory (LSTM) network are well suited for temporal sequence dynamic modeling due to their excellent long-term memory function and feature extraction capability. Furthermore, industrial processes generate a large amount of process data with irregular sampling frequencies. However, traditional LSTM cannot fully utilize the process data with irregular sampling frequency and the guidance value of historical data samples for feature learning. To address these issues, a novel semi-supervised LSTM with history feature fusion attention (HFFA-SSLSTM) model is proposed in this paper. First, the semi-supervised learning strategy is implemented in LSTM to fully utilize the unlabeled data and mine the temporal sequence features of labeled samples and unlabeled samples with irregular sampling frequencies. Then, a novel historical feature fusion attention (HFFA) mechanism is developed, which utilizes historical hidden features to learn attention scores for obtaining weighted historical information-related features. Finally, the extracted features are combined to form the soft sensor model to perform time series prediction tasks for key quality variables in industrial processes. The experimental results on the actual industrial hydrocracking data set demonstrate the effectiveness of the proposed HFFA-SSLSTM model and its possibility of applicating in real industrial processes." @default.
- W4308266156 created "2022-11-09" @default.
- W4308266156 creator A5019075429 @default.
- W4308266156 creator A5026472176 @default.
- W4308266156 creator A5041553936 @default.
- W4308266156 creator A5069168079 @default.
- W4308266156 creator A5071728270 @default.
- W4308266156 creator A5073531557 @default.
- W4308266156 date "2023-01-01" @default.
- W4308266156 modified "2023-09-30" @default.
- W4308266156 title "Semi-supervised LSTM with historical feature fusion attention for temporal sequence dynamic modeling in industrial processes" @default.
- W4308266156 cites W1991298538 @default.
- W4308266156 cites W2018411202 @default.
- W4308266156 cites W2064675550 @default.
- W4308266156 cites W2121353282 @default.
- W4308266156 cites W2124537004 @default.
- W4308266156 cites W2767633924 @default.
- W4308266156 cites W2902166189 @default.
- W4308266156 cites W2932473677 @default.
- W4308266156 cites W2944544772 @default.
- W4308266156 cites W2971595387 @default.
- W4308266156 cites W2987783375 @default.
- W4308266156 cites W2991891372 @default.
- W4308266156 cites W3001458159 @default.
- W4308266156 cites W3003166104 @default.
- W4308266156 cites W3004113099 @default.
- W4308266156 cites W3036543470 @default.
- W4308266156 cites W3081318531 @default.
- W4308266156 cites W3102020143 @default.
- W4308266156 cites W3102778529 @default.
- W4308266156 cites W3123899295 @default.
- W4308266156 cites W3129971022 @default.
- W4308266156 cites W3133919047 @default.
- W4308266156 cites W3172377110 @default.
- W4308266156 cites W3213103995 @default.
- W4308266156 cites W3216537044 @default.
- W4308266156 cites W4206795371 @default.
- W4308266156 cites W4225275318 @default.
- W4308266156 cites W4283019575 @default.
- W4308266156 cites W4283766266 @default.
- W4308266156 cites W4283771106 @default.
- W4308266156 cites W4285384477 @default.
- W4308266156 doi "https://doi.org/10.1016/j.engappai.2022.105547" @default.
- W4308266156 hasPublicationYear "2023" @default.
- W4308266156 type Work @default.
- W4308266156 citedByCount "3" @default.
- W4308266156 countsByYear W43082661562023 @default.
- W4308266156 crossrefType "journal-article" @default.
- W4308266156 hasAuthorship W4308266156A5019075429 @default.
- W4308266156 hasAuthorship W4308266156A5026472176 @default.
- W4308266156 hasAuthorship W4308266156A5041553936 @default.
- W4308266156 hasAuthorship W4308266156A5069168079 @default.
- W4308266156 hasAuthorship W4308266156A5071728270 @default.
- W4308266156 hasAuthorship W4308266156A5073531557 @default.
- W4308266156 hasConcept C103038307 @default.
- W4308266156 hasConcept C106131492 @default.
- W4308266156 hasConcept C108583219 @default.
- W4308266156 hasConcept C111919701 @default.
- W4308266156 hasConcept C115575686 @default.
- W4308266156 hasConcept C119857082 @default.
- W4308266156 hasConcept C124101348 @default.
- W4308266156 hasConcept C138885662 @default.
- W4308266156 hasConcept C140779682 @default.
- W4308266156 hasConcept C153180895 @default.
- W4308266156 hasConcept C154945302 @default.
- W4308266156 hasConcept C158525013 @default.
- W4308266156 hasConcept C173414695 @default.
- W4308266156 hasConcept C26517878 @default.
- W4308266156 hasConcept C2776401178 @default.
- W4308266156 hasConcept C2778112365 @default.
- W4308266156 hasConcept C31972630 @default.
- W4308266156 hasConcept C38652104 @default.
- W4308266156 hasConcept C41008148 @default.
- W4308266156 hasConcept C41895202 @default.
- W4308266156 hasConcept C52622490 @default.
- W4308266156 hasConcept C54355233 @default.
- W4308266156 hasConcept C59404180 @default.
- W4308266156 hasConcept C86803240 @default.
- W4308266156 hasConcept C98045186 @default.
- W4308266156 hasConceptScore W4308266156C103038307 @default.
- W4308266156 hasConceptScore W4308266156C106131492 @default.
- W4308266156 hasConceptScore W4308266156C108583219 @default.
- W4308266156 hasConceptScore W4308266156C111919701 @default.
- W4308266156 hasConceptScore W4308266156C115575686 @default.
- W4308266156 hasConceptScore W4308266156C119857082 @default.
- W4308266156 hasConceptScore W4308266156C124101348 @default.
- W4308266156 hasConceptScore W4308266156C138885662 @default.
- W4308266156 hasConceptScore W4308266156C140779682 @default.
- W4308266156 hasConceptScore W4308266156C153180895 @default.
- W4308266156 hasConceptScore W4308266156C154945302 @default.
- W4308266156 hasConceptScore W4308266156C158525013 @default.
- W4308266156 hasConceptScore W4308266156C173414695 @default.
- W4308266156 hasConceptScore W4308266156C26517878 @default.
- W4308266156 hasConceptScore W4308266156C2776401178 @default.
- W4308266156 hasConceptScore W4308266156C2778112365 @default.
- W4308266156 hasConceptScore W4308266156C31972630 @default.
- W4308266156 hasConceptScore W4308266156C38652104 @default.
- W4308266156 hasConceptScore W4308266156C41008148 @default.