Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308266714> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W4308266714 endingPage "104375" @default.
- W4308266714 startingPage "104375" @default.
- W4308266714 abstract "Deep learning is attracting growing interest from biomedical engineering community. Researchers and clinicians are also increasingly interested in development of machine learning and pattern recognition systems used to diagnose Alzheimer's disease (AD). To enhance diagnostic power for AD, we propose an automatic system integrating convolutional neural networks (CNN) to extract deep traits from magnetic resonance image (MRI) with no prior assumption, a filtering technique to reduce number of features, and k nearest neighbors ( k NN) algorithm to discriminate AD subjects from healthy control (HC) ones. The k NN is tuned by Bayesian optimization (BO) algorithm. The experimental outcomes support the hypothesis that our proposed integrative system can be effective at performing MRI classification: 94.96% ± 0.0486 accuracy, 92.05% ± 0.0746 sensitivity, and 96.62% ± 0.0350 specificity. The obtained result underscore the utility of the proposed system for screening AD as it improves accuracy compared to existing models validated on the same data set." @default.
- W4308266714 created "2022-11-09" @default.
- W4308266714 creator A5049507437 @default.
- W4308266714 date "2023-02-01" @default.
- W4308266714 modified "2023-10-14" @default.
- W4308266714 title "Integrating convolutional neural networks, kNN, and Bayesian optimization for efficient diagnosis of Alzheimer's disease in magnetic resonance images" @default.
- W4308266714 cites W1535448720 @default.
- W4308266714 cites W1982261958 @default.
- W4308266714 cites W1982897978 @default.
- W4308266714 cites W1989214929 @default.
- W4308266714 cites W1992709597 @default.
- W4308266714 cites W2030415119 @default.
- W4308266714 cites W2037937061 @default.
- W4308266714 cites W2068848013 @default.
- W4308266714 cites W2112796928 @default.
- W4308266714 cites W2122111042 @default.
- W4308266714 cites W2130371234 @default.
- W4308266714 cites W2331803192 @default.
- W4308266714 cites W2476291514 @default.
- W4308266714 cites W2574038793 @default.
- W4308266714 cites W2618530766 @default.
- W4308266714 cites W2621218712 @default.
- W4308266714 cites W2756892287 @default.
- W4308266714 cites W2783188875 @default.
- W4308266714 cites W2805494981 @default.
- W4308266714 cites W2896115045 @default.
- W4308266714 cites W2904144652 @default.
- W4308266714 cites W2919115771 @default.
- W4308266714 cites W2942812261 @default.
- W4308266714 cites W2946763314 @default.
- W4308266714 cites W2948685905 @default.
- W4308266714 cites W2966909379 @default.
- W4308266714 cites W2970055610 @default.
- W4308266714 cites W2970152602 @default.
- W4308266714 cites W2982297722 @default.
- W4308266714 cites W2985319835 @default.
- W4308266714 cites W3016319677 @default.
- W4308266714 cites W3018518800 @default.
- W4308266714 cites W3125139346 @default.
- W4308266714 cites W3208463329 @default.
- W4308266714 cites W4200598427 @default.
- W4308266714 cites W4205597106 @default.
- W4308266714 cites W4206361110 @default.
- W4308266714 cites W4280636692 @default.
- W4308266714 cites W4281751621 @default.
- W4308266714 doi "https://doi.org/10.1016/j.bspc.2022.104375" @default.
- W4308266714 hasPublicationYear "2023" @default.
- W4308266714 type Work @default.
- W4308266714 citedByCount "5" @default.
- W4308266714 countsByYear W43082667142023 @default.
- W4308266714 crossrefType "journal-article" @default.
- W4308266714 hasAuthorship W4308266714A5049507437 @default.
- W4308266714 hasConcept C107673813 @default.
- W4308266714 hasConcept C126838900 @default.
- W4308266714 hasConcept C143409427 @default.
- W4308266714 hasConcept C153180895 @default.
- W4308266714 hasConcept C154945302 @default.
- W4308266714 hasConcept C2778049539 @default.
- W4308266714 hasConcept C41008148 @default.
- W4308266714 hasConcept C50644808 @default.
- W4308266714 hasConcept C71924100 @default.
- W4308266714 hasConcept C81363708 @default.
- W4308266714 hasConceptScore W4308266714C107673813 @default.
- W4308266714 hasConceptScore W4308266714C126838900 @default.
- W4308266714 hasConceptScore W4308266714C143409427 @default.
- W4308266714 hasConceptScore W4308266714C153180895 @default.
- W4308266714 hasConceptScore W4308266714C154945302 @default.
- W4308266714 hasConceptScore W4308266714C2778049539 @default.
- W4308266714 hasConceptScore W4308266714C41008148 @default.
- W4308266714 hasConceptScore W4308266714C50644808 @default.
- W4308266714 hasConceptScore W4308266714C71924100 @default.
- W4308266714 hasConceptScore W4308266714C81363708 @default.
- W4308266714 hasLocation W43082667141 @default.
- W4308266714 hasOpenAccess W4308266714 @default.
- W4308266714 hasPrimaryLocation W43082667141 @default.
- W4308266714 hasRelatedWork W2175746458 @default.
- W4308266714 hasRelatedWork W2406522397 @default.
- W4308266714 hasRelatedWork W2613736958 @default.
- W4308266714 hasRelatedWork W2726121760 @default.
- W4308266714 hasRelatedWork W2732542196 @default.
- W4308266714 hasRelatedWork W2738221750 @default.
- W4308266714 hasRelatedWork W2760085659 @default.
- W4308266714 hasRelatedWork W2912288872 @default.
- W4308266714 hasRelatedWork W3012978760 @default.
- W4308266714 hasRelatedWork W3093612317 @default.
- W4308266714 hasVolume "80" @default.
- W4308266714 isParatext "false" @default.
- W4308266714 isRetracted "false" @default.
- W4308266714 workType "article" @default.