Matches in SemOpenAlex for { <https://semopenalex.org/work/W4308266990> ?p ?o ?g. }
- W4308266990 endingPage "109615" @default.
- W4308266990 startingPage "109615" @default.
- W4308266990 abstract "Gathering knowledge about physical settings and visual information of places has long been of interest to a wide variety of fields as they affect the experience of observers. Previous studies have relied on on-site surveys, low-throughput methods, and limited data sources, which especially hinder analyzing waterscape features. Thus, detecting the relationships between the human perception results of large-scale urban water areas and the waterfront features at high spatial resolutions remains challenging, and worldwide studies have not been conducted. We investigate an alternative: a data-driven waterscapes evaluation approach based on computer vision (CV) to analyze water view imagery (WVI) in 16 cities around the world and measure how people perceive scenes using virtual reality (VR). We bring attention to WVI – the counterpart of street view imagery (SVI) on water bodies, which is readily available for many cities thanks to the usual SVI services, but has been entirely overlooked in research hitherto. Specifically, a deep learning model, which has been trained with 500 segmented water-level photos, was developed to analyze them, achieving the mean pixel accuracy (MPA) of 94%, which advances state of the art. These panoramic images have been assessed through a virtual experience survey in which 60 participants indicated their perceptions across multiple dimensions. Afterwards, a series of statistical analyses were conducted to determine the visual indicators that drive perceptions, and the relationship between the people’s subjective visual perceptions and objective waterscape environment as seen by machines has been established. The results take researchers and watercourse planners one step toward understanding the interactions of the perceptions and semantics of water areas globally. The large-scale dataset we produced in this research has been released openly as the first such instance of open segmented water view imagery, and it is intended to support future studies." @default.
- W4308266990 created "2022-11-10" @default.
- W4308266990 creator A5001627190 @default.
- W4308266990 creator A5010235735 @default.
- W4308266990 creator A5047830183 @default.
- W4308266990 creator A5078602454 @default.
- W4308266990 date "2022-12-01" @default.
- W4308266990 modified "2023-10-05" @default.
- W4308266990 title "Water View Imagery: Perception and evaluation of urban waterscapes worldwide" @default.
- W4308266990 cites W1970264081 @default.
- W4308266990 cites W1986674425 @default.
- W4308266990 cites W1988187608 @default.
- W4308266990 cites W2013813939 @default.
- W4308266990 cites W2026341100 @default.
- W4308266990 cites W2048400826 @default.
- W4308266990 cites W2473009342 @default.
- W4308266990 cites W2511122197 @default.
- W4308266990 cites W2530778585 @default.
- W4308266990 cites W2562330915 @default.
- W4308266990 cites W2617647211 @default.
- W4308266990 cites W2751293097 @default.
- W4308266990 cites W2766771905 @default.
- W4308266990 cites W2781636636 @default.
- W4308266990 cites W2791280249 @default.
- W4308266990 cites W2794191739 @default.
- W4308266990 cites W2890231632 @default.
- W4308266990 cites W2915731581 @default.
- W4308266990 cites W2933718005 @default.
- W4308266990 cites W2943595549 @default.
- W4308266990 cites W2947466881 @default.
- W4308266990 cites W2947664918 @default.
- W4308266990 cites W2962764844 @default.
- W4308266990 cites W2963881378 @default.
- W4308266990 cites W2967496926 @default.
- W4308266990 cites W2983285440 @default.
- W4308266990 cites W2989883879 @default.
- W4308266990 cites W2992376317 @default.
- W4308266990 cites W3006084244 @default.
- W4308266990 cites W3008352878 @default.
- W4308266990 cites W3010997816 @default.
- W4308266990 cites W3018153731 @default.
- W4308266990 cites W3021326911 @default.
- W4308266990 cites W3028752951 @default.
- W4308266990 cites W3036232613 @default.
- W4308266990 cites W3046363999 @default.
- W4308266990 cites W3046751713 @default.
- W4308266990 cites W3048826305 @default.
- W4308266990 cites W3058852410 @default.
- W4308266990 cites W3082825147 @default.
- W4308266990 cites W3086341249 @default.
- W4308266990 cites W3092116248 @default.
- W4308266990 cites W3108852469 @default.
- W4308266990 cites W3119672322 @default.
- W4308266990 cites W3120127952 @default.
- W4308266990 cites W3128834039 @default.
- W4308266990 cites W3137605476 @default.
- W4308266990 cites W3147538071 @default.
- W4308266990 cites W3151945206 @default.
- W4308266990 cites W3154019088 @default.
- W4308266990 cites W3157327345 @default.
- W4308266990 cites W3165845364 @default.
- W4308266990 cites W3169585281 @default.
- W4308266990 cites W3177478558 @default.
- W4308266990 cites W3195494505 @default.
- W4308266990 cites W3202149743 @default.
- W4308266990 cites W3202786944 @default.
- W4308266990 cites W3202938484 @default.
- W4308266990 cites W3209898163 @default.
- W4308266990 cites W3209945042 @default.
- W4308266990 cites W3215358746 @default.
- W4308266990 cites W3216925745 @default.
- W4308266990 cites W3217508649 @default.
- W4308266990 cites W4206365600 @default.
- W4308266990 cites W4214909946 @default.
- W4308266990 cites W4220925603 @default.
- W4308266990 cites W4221021649 @default.
- W4308266990 cites W4223545569 @default.
- W4308266990 cites W4224245645 @default.
- W4308266990 cites W4238826975 @default.
- W4308266990 cites W4281720633 @default.
- W4308266990 cites W4291570752 @default.
- W4308266990 cites W4292117317 @default.
- W4308266990 cites W4293210161 @default.
- W4308266990 cites W4296836718 @default.
- W4308266990 cites W631895740 @default.
- W4308266990 cites W96535145 @default.
- W4308266990 doi "https://doi.org/10.1016/j.ecolind.2022.109615" @default.
- W4308266990 hasPublicationYear "2022" @default.
- W4308266990 type Work @default.
- W4308266990 citedByCount "7" @default.
- W4308266990 countsByYear W43082669902023 @default.
- W4308266990 crossrefType "journal-article" @default.
- W4308266990 hasAuthorship W4308266990A5001627190 @default.
- W4308266990 hasAuthorship W4308266990A5010235735 @default.
- W4308266990 hasAuthorship W4308266990A5047830183 @default.
- W4308266990 hasAuthorship W4308266990A5078602454 @default.
- W4308266990 hasBestOaLocation W43082669901 @default.
- W4308266990 hasConcept C136197465 @default.